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ABSTRACT
Collaborative filtering has become an established method
to measure users’ similarity and to make predictions about
their interests. However, prediction accuracy comes at the
cost of user’s privacy: in order to derive accurate similar-
ity measures, users are required to share their rating history
with each other. In this work we propose a new measure of
similarity, which achieves comparable prediction accuracy
to the Pearson correlation coefficient, and that can success-
fully be estimated without breaking users’ privacy. This
novel method works by estimating the number of concor-
dant, discordant and tied pairs of ratings between two users
with respect to a shared random set of ratings. In doing
so, neither the items rated nor the ratings themselves are
disclosed, thus achieving strictly-private collaborative filter-
ing. The technique has been evaluated using the recently
released Netflix prize dataset.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Information
Filtering

General Terms
Algorithms, Security

Keywords
Correlation, Privacy, Recommender Systems

1. INTRODUCTION
Recommendation systems were designed in response to a

well known problem: lack of time. People using the web,
browsing e-commerce catalogs or news web sites, simply do
not have the time to look through (and perhaps sample)
the available items to find all the ones they like; they are
confronted with the problem of information overload [1]. So
instead of letting users get lost in the insurmountable quan-
tity of information they have before them, many web sites

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RecSys’07, October 19–20, 2007, Minneapolis, Minnesota, USA.
Copyright 2007 ACM 978-1-59593-730-8/07/0010 ...$5.00.

present users with recommendations: by collecting taste in-
formation they create user profiles, and use them to make
automatic predictions of user preferences. In recent years,
collaborative filtering (CF) has established itself as the prin-
ciple means of generating these recommendations. CF is a
method of using the community’s behavior to support that
of each individual. An example can be taken from Last.fm
[2]: if I like the blues musician John Lee Hooker, rather than
browsing all the artists tagged “blues,” I can focus on what
people who also like John Lee Hooker listen to, and find that
I may also enjoy Muddy Waters.

Recommender systems traditionally face two conflicting
challenges: on the one hand, accuracy (i.e., finding a method
to generate recommendations that will closely match the
user’s actual taste); on the other hand, scalability, since
generating these recommendations requires a lot of compu-
tational power. As these methods move from centralised
servers to distributed, and eventually mobile, platforms, a
third issue, that is, data privacy, gains more importance
than ever before, and adds a new layer of complication to
the problem of collaborative filtering [3].

The problem may stem from various sources: on one hand
lack of trust in centralised repositories (and their promise of
keeping profile information private); or reluctance, in a dis-
tributed environment, to collaborate and interact with un-
known neighbors. However, collaboration is the key to suc-
cessful recommendations. Let us move the previous Last.fm
example to a distributed, peer-to-peer, environment. If I
were asking ten people what they think of Muddy Waters,
to predict how much I will like him, then I would prefer to
weight the responses I receive based on how similar the rec-
ommenders tastes are to my own. This idea is in line with
the concept that a recommender’s opinion will be more valu-
able to me if they are like me; someone who listens to the
same music I do will provide more insight into how much I
will enjoy Muddy Waters rather than, for example, someone
who listens to techno. This means each pair of users needs to
measure their similarity, or correlation, by comparing each
other’s profiles to their own. What if I do not want to share
my personal tastes with the strangers, since I do not know
how they will use this information? Unfortunately, current
CF techniques require users to release their entire profile, a
requirement that may not only discourage them from par-
taking in the CF process, but hurt the overall system by
reducing the number of users willing to collaborate.

In order to achieve private collaborative filtering in a peer-
to-peer environment, privacy should be clearly defined and
methods of supporting varying degress of privacy should be



created. Current methods, described in Section 3, show that
it is difficult to find user similarity without compromising
their profiles. We propose a new way of computing the cor-
relation between users, based on concordance, in Section 3.2.
Our method aims to compute the proportion of agreement
between pairs of users, without requiring them to disclose
any part of their profile. Instead, two users who want to
compute their similarity will only have to share a randomly
generated set of ratings, and report to each other the num-
ber of concordant, discordant, and tied pairs that they share
with it. The evaluation of this new method is three-fold: we
first compare its prediction accuracy to the Pearson corre-
lation coefficient (Section 3.2), then examine the root mean
squared and mean absolute error (RMSE and MAE) mea-
sures of the correlation-estimation method on both real and
synthetic data in Sections 5.1 and 5.2, lastly, we explore the
price incurred on prediction accuracy by using estimated,
rather than the actual, similarity measures.

2. PRIVACY

2.1 Definition
Before describing how to achieve privacy within CF, an

accurate definition of what privacy means is required. In
[4], Alan Westin gives the following definition:

“Individuals, groups, or institutions have the right
to control, edit, manage, and delete information
about themselves and decide when, how, and to
what extent that information is communicated
to others.”

The highlight of this definition is that privacy is about con-
trol, an idea that resounds in legislation on privacy and use
of personal data, such as in the 95/46/EC European direc-
tive1. Rather than being about withholding or concealing
information, supporting privacy means allowing users to ex-
ercise full authority over all components and the aggregate of
the information that constitutes their profile, and construct-
ing means to allow for collaboration between users when full
privacy is desired.

2.2 Private and Public Data
A user in a collaborative filtering environment will gen-

erate a set of ratings about some items, such as movies or
songs. The set corresponds to the user’s profile, and will be
used as a means for providing recommendations to neigh-
boring users, or other users who are also creating rating sets
in the same environment. With regards to this definition of
user’s profile, we call private information the following:

• The fact that user a has rated item i.

• A rating ra,i by user a for item i.

• The mean rating r̄a for user a over all items it has
rated.

• The total number of items that n that user a has rated.

In decentralised environments, such as the ones proposed in
[5], users will store this information on their local devices.
In the same setting, we define public information as:

1http://en.wikipedia.org/wiki/Directive 95/46/
EC on the protection of personal data

• The total number of items N that can be rated in the
current set. As items are added and removed, all users
will be informed of the new size of N .

• The difference between a rating for item i and the user
mean rating, (ra,i − r̄a).

The second value is what neighbors will use when they are
creating a predicted value for an unrated item. Although it
shows whether item i was rated above or below the mean
rating by user a, given this value, it is hard to find ra,i and
r̄a. However, by relying on this value, the system becomes
vulnerable to different attacks, which will be discussed in
Section 7.

3. COLLABORATIVE FILTERING

3.1 Current Methods: No Privacy
The current methods of conducting neighborhood-based

collaborative filtering require correlation coefficients to be
calculated between every pair of users. These coefficients
roughly correspond to how much users will trust, and there-
fore how much they will weight, each other when aggregat-
ing many recommendations together. The most widely cited
method to compute such coefficients is the Pearson correla-
tion coefficient (equation 1) [6], [7] although variations and
other measures exist [8].

wa,b =
ΣN

i=1(ra,i − r̄a)(rb,i − r̄b)√
ΣN

i=1(ra,i − r̄a)2ΣN
i=1(rb,i − r̄b)2

(1)

This method finds a similarity measure based on the inter-
section of the user ratings (i.e. the items that have been
rated by both users); unrated items, or those rated by only
one of the two sides, are not considered. In other words, the
input vectors to these measures are of size |ra| ∩i |rb|.

The measures are then used by user a as weights when
generating a predicted rating pa,i for an item. If there
are no neighbors who can provide a recommendation, then
the returned predicted value is the current user’s mean, a
small heuristic that neither punishes nor rewards the pre-
dicted ratings of items for which there is no recommenda-
tion. Otherwise, recommendations from many neighbors are
combined together by calculating a weighted average of the
deviations from each neighbor’s mean [6], as follows:

pa,i = r̄a +
ΣM

u=1(ru,i − r̄u)wa,u

ΣM
u=1wa,u

(2)

Where M is the number of recommendations received. Ide-
ally, we would like to be able to use the above measures
with the defined privacy requirements. To do so would en-
tail decomposing the similarity equations into two parts, and
defining a new operation to compose the two halves together,
in such a way that the two rating sets would never have to
be directly compared to one another. In other words, two
users, wishing to find their similarity, would perform an op-
eration on their own rating set and, after reporting these
values to each other, they would be able to find their ac-
tual correlation by composing the two values. However, the
current method to generate these coefficients are such that
it is difficult to compute these coefficients without requiring
users to share their rating history with each other.



Table 1: Prediction Error using Somers and Pearson coefficients
RMSE MAE Uncovered

Neighbors Pearson Somers Pearson Somers Pearson Somers
1 1.405 1.171 1.096 0.895 0.971 0.930
10 1.298 1.132 1.001 0.870 0.743 0.696
30 1.200 1.113 0.930 0.857 0.485 0.537
50 1.153 1.098 0.893 0.847 0.391 0.461
100 1.110 1.088 0.859 0.839 0.291 0.361
500 1.066 1.066 0.825 0.825 0.140 0.150
999 1.067 1.063 0.826 0.824 0.125 0.136

3.2 Concordance
An alternative way of defining the correlation between two

users within a single rating context (e.g. movies), which
can be used to achieve the data privacy described above,
is using the proportion of concordant, discordant, and tied
pairs of ratings that users share. If we define the difference
between a user a’s rating for an item i and a’s mean rating
as fa,i = ra,i − r̄a, then given a pair of ratings, ra,i and rb,i,
by different users a and b for the same item i, such ratings
would be:

• Concordant, if

– fa,i > 0 and fb,i > 0, or

– fa,i < 0 and fb,i < 0

• Discordant, if

– fa,i > 0 and fb,i < 0, or

– fa,i < 0 and fb,i > 0

• Tied, if

– fa,i = 0 or fb,i = 0,

– ra,i does not exist (the item is unrated), or

– rb,i does not exist

Given a total number N of items, and the numbers of con-
cordant (C), discordant (D), and tied (T ) ratings between
two users a and b we can define a new measure of associa-
tion between the two users. This measure is called Somers’
d, and is defined as follows [9]:

da,b =
C −D

N − T
(3)

This value can be interpreted as finding the proportion of
how much users tend to agree with each other, and can be
used a a weight when aggregating recommendations, exactly
as wa,b or cos(a, b).

Before moving on to show how this coefficient allows for
private collaborative filtering, it is useful to put it into per-
spective by showing how it compares, in terms of prediction
accuracy, to the more commonly seen coefficients, namely
the Pearson correlation coefficient. We selected the Pearson
correlation coefficient as a base line for comparison (instead
of, say, vector similarity) since it To do this we used a sub-
set of the recently released Netflix competition dataset [10].
The entire dataset is reported to contain 100 million ratings,
made by 480,000 users on 17,770 movies, making it among
the largest real user-rating datasets available to the public.

The subset that we used is a set of 999 customers who had
rated between 100 and 500 movies each. The subset was
then split into training and prediction sets, by ordering each
user’s ratings chronologically, and splitting at the midpoint.
We chose this subset with the goal of using it to compare
the two algorithms on a plausible dataset, that is, a dataset
that is neither too sparse (only a couple of ratings per user)
nor too dense (there are a handful of customers who have
rated all of the movies). In other words, we did not test
the “extreme” behaviors of the algorithms, but selected a
subset that displays the data sparsity feature that is a com-
mon characteristic to most rating datasets. This decision
removed the need for us to consider modified versions of the
Pearson coefficient that address the inaccuracy of measur-
ing similarity when users have very small profiles, such as
the n/50 significance-weighting method [6]. It also allows
us to differentiate between the problem of estimating profile
similarity between users who have constructed a profile, and
the separate problem of bootstrapping similarity measures
between users who have provided very little information to
the system.

We first used the training set to generate both the Pearson
correlation and Somers’ d coefficients between every pair of
users. We then used these coefficients as weights in the pre-
diction method (equation 2) with varying numbers of neigh-
bors for each set of coefficients. The results are reported
in both root mean squared error (RMSE) and mean abso-
lute error (MAE) between the actual and predicted ratings,
as shown in Table 1. We also include another error mea-
sure, that is, the proportion of uncovered items. This cor-
responds to the number of movies for which no recommen-
dation could be found (within the given set of neighbors)
divided by the number of movies in the test set. These
are the two most common error measures for collaborative
filtering algorithms; however, in these experiments, we mea-
sured them separately. In other words, the RMSE and MAE
measures were derived only on the predicted ratings that
the system could generate, and answers the question “when
the system can generate recommendations, how accurate are
they?” Similarly, the coverage measure looks to answer the
question “what proportion of the dataset can the system
generate predictions for?”

One of the most notable differences between the two meth-
ods is that the Somers’ d measure only looks for agreement
within the ratings, thus reducing the rating scale to 3-values
(like/dislike/no opinion). This would seem to imply a loss
of information with respect to the Pearson coefficient, where
ratings are weighted by how much they deviate from the
mean. However, as Table 1 demonstrates, the error com-



puted using the two methods is very similar, thus suggesting
no meaningful loss of information, or perhaps counting the
number of tied pairs compensates for what was disregarded.
The operations involved in computing the Somers’ d coeffi-
cient are however computationally much clearer than those
required by the Pearson method (which include power and
square root); the Somers’ d method does not entail addi-
tional overhead.

4. USING CONCORDANCE TO ACHIEVE
PRIVACY

4.1 Transitivity of Concordance
The interesting property about concordance measures is

that a pair of ratings ra,i and rb,i can be categorized as either
concordant, discordant, or tied, without ever directly com-
paring them, but rather comparing them to a third rating
rc,i.

It is relatively simple to show (using the definitions in
given in Section 3.2) that if both relationships between (ra,i,
rc,i) and (rb,i, rc,i) are either concordant or discordant, then
the relationship (ra,i, rb,i) is concordant. Similarly, if one is
concordant and the other discordant, then (ra,i, rb,i) must
be discordant. Lastly, if we impose the restriction that the
value rc,i will not equal the mean r̄c or be “unrated,” then
if one of the two relationships is tied, (ra,i, rb,i) will also be
tied.

We can show how this works with a small example. Sup-
pose a, who has mean 3.5, rates an item 4 stars, and b, who
has mean 2, rates the same item 3 stars. The differences
between the ratings and the means, fa,i and fb,i are both
positive: it is clear that these two ratings are concordant
with each other. Now pick a random rating rr,i, say 1, and
suppose the mean of the random set is 2.5. When a com-
pares this rating to its own, it will conclude that the two are
discordant, and b will similarly achieve the same result. If a
tells b that it is discordant with rr,i, then, by the definition
of discordant pairs, there are two possible cases that could
have arisen:

• fa,i < 0, and fr,i > 0, or

• fa,i > 0, and fr,i < 0, or

Since b also has access to rr,i, it knows that fr,i < 0, and
for a to have chosen discordant means that the second case
must be true, fa,i > 0, and so a’s rating is concordant to its
own.

4.2 Concordance, with Privacy
We use the indirect comparisons to introduce full privacy

into the collaborative filtering process. Given two users, a
and b, our method computes a privacy-preserving similarity
measure as follows:

1. Generate rr, a set of ratings of size N such that no
rating rr,i is equal to the set’s mean, r̄r, and each rat-
ing is a random number that is uniformly distributed
on the rating scale.

2. a finds and reports:

• Car, the number of concordant pairs it shares
with the random set,

• Dar, the number of discordant pairs it shares with
the random set, and

• Tar, the number of tied pairs.

3. Similarly, b finds and reports the values Cbr, Dbr, and
Tbr to a.

4. Each pair of values is used to find an upper and lower
bound on the actual, unknown values Cab, Dab, Tab.

5. The bounds are then used to generate an estimate of
dab.

In order to precisely define how the lower and upper bounds
of Point 4 are computed, we consider each set in more detail.

4.2.1 Tied Pairs
If there were only 2 items, x and y, that could be rated,

and both a and b found that they are tied on 1 of those pairs
with r, then they could both be tied on the same item x, or
a could be tied on x and b tied on y. This implies that the
lower bound to the number of tied items is max(Tar, Tbr).
The upper bound is (Tar + Tbr), unless this sum is greater
than N, in which case the upper bound is N. In this example,
1 ≤ Tab ≤ 2. More generally:

max(Tar, Tbr) ≤ Tab ≤ (Tar + Tbr) (4)

4.2.2 Concordant Pairs
Estimating the bounds on the number of concordant pairs

is not as straightforward. It is helpful to first define two
additional values, minOverlap and maxOverlap. Let us
consider the same example as above: given that both users
report that they are tied on one item, then (although we do
not know how many they are tied on with each other), the
maximum possible overlap, that is, the maximum number
of items they could agree upon, is the minimum of the two
values:

maxOverlap(Car, Cbr) = min(Car, Cbr) (5)

Consider a similar example, where there are 5 items that
can be rated, and a reports having 2 concordant pairs with
r, while b reports 4 concordant pairs. Again, we do not
know which pairs are the concordant ones, but we know the
number of pairs. From above, we deduce that the maximum
overlap is 2, and this would be the case if both the items
that a is concordant on are also concordant for b. So what
if the contrary were true, and both a and b were concordant
with r on different items- what would the minimum overlap
be? There are a total of 5 items, and 4 of them have been
labelled concordant by b. That leaves 1 item that a can rate
concordant, but a has 2 concordant pairs. Therefore, there
must be a minimum overlap of one pair between the two.

minOverlap(Car, Cbr, N) = min(Car, Cbr)−
(N −max(Car, Cbr))

(6)

Using these equations, we can define the lower bound on
the number of concordant pairs as the minimum overlap be-
tween the two values. As described above, the properties of
concordance transitivity show that two concordant pairs and
two discordant pairs result in a concordant pair. Therefore,
an upper bound to the total number of concordant pairs is
the maximum overlap between the two values plus the max-
imum overlap between the number of discordant pairs. In



other words:

minOverlap(Car, Cbr) ≤ Cab ≤
maxOverlap(Car, Cbr) + maxOverlap(Dar, Dbr)

(7)

4.2.3 Discordant Pairs
To define the bounds on the number of discordant pairs,

we use another property of concordance measures. When
counting the different numbers of pairs, every entry is la-
belled as either concordant, discordant, or tied, even if an
item is unrated. This implies that the sum of the concor-
dant, discordant, and tied pairs will equal the size N , or the
total number of items that can be rated. The lower bound
on the number of discordant pairs can therefore be defined
as N minus the upper bounds for the concordant and tied
pairs, Cmax

ab , T max
ab . Similarly, the upper bound is N minus

the lower bounds for the number of concordant and tied
pairs, Cmin

ab , T min
ab :

N − (Cmax
ab + T max

ab ) ≤ Dab ≤ N − (Cmin
ab + T min

ab ) (8)

4.2.4 Estimated Concordance
Now that we have the bounds, we can generate a predic-

tion of the actual correlation by using the midpoints of each.
If the midpoints for the number of shared concordant and
discordant pairs are the same, then the resulting similarity
will be 0, a result that (if widespread throughout the com-
munity) will lead to very poor coverage. To counteract this
behavior, we weight the number of concordant pair midpoint
higher than the discordant midpoint, thus favoring the de-
gree to which two entities estimate they will agree rather
than disagree.

predicted(da,b) =
C̄ab − 0.5D̄ab

N − T̄ab

(9)

4.3 Privacy, with Concordance
How does this method achieve private collaborative filter-

ing? Returning to the definition of private data, our goal
was to of find a similarity measure without requiring users
to release the information listed Section in 2.2. That is,
what items they have rated and the ratings that constitute
their profile.

Concordance-based measures of similarity are not con-
cerned with the actual ratings that users give their items,
but rather the relationship that these ratings have with the
mean rating. If a particular user reported that Tar = 0,
or, in other words, that all of its ratings were either con-
cordant or discordant with the random set, then we would
know that the user has rated all the items. On the other
hand, we would not be able to precisely match the concor-
dant and discordant pairs to the actual items i, and, given
that these values represent agreement relative to the mean
rather than ratings, we would still have no information on
how likely individual ratings are within that user’s set.

Having imposed the requirement that no rating in the ran-
dom set can equal the random set mean, we ensure that the
random set will not interfere with the bounds on the num-
ber of tied pairs between the users, therefore not distorting
the estimated value. A tied pair is also defined as one of two
possibilities: when an item is unrated, or when the item rat-
ing equals the user mean. Therefore, two users, one who has
not rated any items, and the other who has rated all items
the same, can not be differentiated. The estimation method
we proposed uses abstracted information derived from the

profile and the shared random set. In other words, if the
random set is only shared between the two users who want
to estimate their similarity, then the resulting pair values
will not be useful profiling information to any third party
(that does not have the random set).

However, there are ways to leak profile information. Con-
sider the worst-case scenario, where user a is fully concor-
dant with the generated random set. Although the actual
ratings remain unknown, this implies that the user has rated
all available items, and the actual similarity can be derived
using the random set. If, for example, the rating scale is 1
to 5 stars, the random set had mean r̄r = 2.5, and item i
had rating, rr,i = 4, then, to be concordant on this item,
user a would have had to have rated item i above r̄a. On
the other hand, had rr,i = 1, we would know that ra,i is less
than r̄a.

The user performing the estimation method with a would
be able to build a profile of a using binary values. It would
contain a +1 for every above-the-mean rating, and a -1 for
every below-the-mean rating. The profile is fully revealed
since this is enough information to be able to compute the
actual Somers’ d between the two. The same case would
arise if user a were discordant with the entire random set.

The probability of the worst-case happening is dependent
on the set of items that can be rated, and is roughly equiva-
lent to the probability that a particular user has both rated
the entire set and the that the relationships generated in the
random set will be a perfect match to the user’s set. Given
that in real life, the majority of available rating datasets are
highly sparse, and recommendation systems were designed
to confront large sets of items, the likelihood of this ever oc-
curring remains very small. Extra security measures could
also be enforced. For example, half of the random set could
generated by a, and the other half by b, and if either of
the two users finds that they are fully concordant on the
half they generated, they could re-generate their half before
sharing it with the other user. Therefore, even though a
may still find that it is fully concordant with the half that b
generated, a would ensure that the possibility of being fully
concordant with the entire set could never happen.

This method is useful for estimating similarity with strict
privacy enforced, but given that these systems will oper-
ate over time (as recommendations are exchanged between
peers), it does not prevent peers from inferring each other’s
profiles based on the received recommendations: a user would
have to communicate with a wide range of other users to
minimise the possibility of this happening. It is also worth
noting that if a group of users shared with each other their
similarity to a target user, then some work could be done
to infer the general tastes and opinions of the target. The
problem of identifying colluding users, and evaluating the
trustworthiness of recommenders in the community, deserves
closer inspection and are left as matters of future study.

5. EVALUATION
Previous work [11] has reported that the results of many

collaborative filtering techniques are sensitive to the dataset
they operate on. Moreover, each dataset is characterised by
different size and sparsity parameters, corresponding to the
number of items that can be rated and the number of ratings
that users have made. The aim of privacy-enhanced CF is
to introduce novel methods that can operate across a wide
range of datasets, not methods designed to suit a particular



Figure 1: MAE Estimation Error with Fixed Dataset Size

case. That is why, to test our method, we first ran exper-
iments using three randomly generated sets, A, R, and B.
The value of these simulations is that it allowed us to test
our method over a wide range of size and sparsity inputs,
even though the ratings themselves may not model actual
human behavior. If we abstract away from the idea that a
vector A represents a user profile, and instead consider it
to be a set of numbers that will have a fixed, observable
correlation with a different set B, then the aim of using sim-
ulated data is to verify how well this technique can estimate
the actual correlation using the values reported in common
with the middle set R. The details of the experiments and
the results obtained can be found in Section 5.1. We then
tested the accuracy of our method against a real dataset,
and an analysis of the results can be found in Section 5.2.

5.1 Results with Random Data
We split the experiment on random data into two parts;

in the first we kept the sparsity constant and varied the size.
The experiment using fixed sparsity proportions was run as
follows:

Sparsity = x
for N = 1000 to 20000 do

error = double[100]
for i = 0 to 100 do

1. Generate rr such that:
∀r,i = random number uniformly distributed
between 1 and 5
∀rr,i, rr,i 6= r̄r

2. Generate ar and br, with size N such that:
Each rating is random, uniformly distributed
between 1 and 5
x% of the ratings are set to -1 (unrated)

3. Compare ar and rr to find:
Car, the number of concordant pairs
Dar, the number of discordant pairs
Tar, the number of tied pairs

4. Compare br with rr to find Cbr, Dbr, and Tbr

5. Compute
Tmin = max(Tar, Tbr)
Tmax = sum(Tar, Tbr)
Cmax = maxOverlap(Car, Cbr)
Cmin = minOverlap(Car, Cbr)

+maxOverlap(Dar, Dbr)
Dmin = N − (Cmax + Tmax)
Dmax = N − (Cmin + Tmin)

actual(a, b) = somers(Cab, Dab, Tab, N)
predicted(a, b)

= somers(Cmin+Cmax
2

, Dmin+Dmax
2

, Tmin+Tmax
2

, N)
error[i] = |predicted(a, b)− actual(a, b)|

end for
MAE = sumj(error[])/100

end for

In the second experiment we varied the sparsity over fixed
size, by replacing the sparsity input above with a size def-
inition, and changing the for loop to iterate over sparsity
proportions. The purpose of these two experiments was to
observe the behavior of the estimation process without hav-
ing to combine both inputs. In each run of the experiments,
we would generate A, R, and B according to the size and
sparsity inputs, and then record both the actual and esti-
mated similarity between A and B, to generate MAE mea-
sures of the estimation process. The results are plotted in
Figure 2 and 1. The results using synthetic data are helpful
in determining the applicability of our solution as a method
of estimating similarities between datasets. They show that
our method can work with varying degrees of error, but pro-
vide no insight into the effect of such error on the prediction
accuracy when using the estimated coefficients, which can
only be analysed by using real data.

5.2 Results with Real Data
After experimenting with synthetic data, we returned to

the Netflix dataset to test our methodology on real data.
Analysis of the subset of customers that we had selected
showed that the proportion of unrated items was about 99%,
in other words, the dataset is very sparse, and falls into
the worst-performance area of the simulation results. For
each pair of customers, we generated the actual concordance
similarity, and then created a random set of ratings to find
the predicted similarity.

Generating coefficients with small error values in the sim-
ulation is encouraging, but not sufficient to show that de-
signing a means for preserving strict privacy is helpful to



Figure 2: MAE Estimation Error with Fixed Dataset Sparsity

Table 2: Prediction Error Using Estimated and Actual Somers Coefficients
RMSE MAE Uncovered

Neighbors Actual Estimated Actual Estimated Actual Estimated
1 1.171 1.255 0.895 0.983 0.930 0.925
10 1.132 1.265 0.870 0.981 0.696 0.689
30 1.113 1.221 0.857 0.942 0.537 0.514
50 1.098 1.190 0.847 0.915 0.461 0.425
100 1.088 1.145 0.839 0.881 0.361 0.316
500 1.066 1.086 0.825 0.840 0.150 0.141
999 1.063 1.061 0.823 0.824 0.136 0.088

collaborative filtering; after all, the main task is to address
information overload and maintaining privacy could be a
barrier to the solution to this problem. The last experiment
we ran was aimed at discovering to what extent the error in
the predicted coefficients impacted the prediction accuracy.
To do so, we ran the same prediction method used in sec-
tion 3.2: using the same training and test sets as before, we
generated predicted ratings using the estimated coefficients.
The results are shown in Table 2, side by side with the pre-
vious results from using the actual Somers’ coefficients.

The surprising result is that the effect, in terms of predic-
tion accuracy and coverage, of using estimated coefficients
is not as strong as may have been anticipated. The results,
in some cases, are marginally better than using the actual
coefficients, although the extent to which a 0.02 improve-
ment will have on the system as a whole has yet to be fully
explored. Just as collaborative filtering algorithms behave
differently according to the the dataset they operate on, they
are also subject to the parameters used in aggregating rec-
ommendations. In these experiments we implemented the
top-k neighbors, without using any correlation threshold.
However, it is relatively simple to see that if we opted to use
the top-k recommenders, i.e. users who had rated the item in
question, the coverage results would have been significantly
improved.

6. PREVIOUS WORK
There has been a wide range of work done on preserving

privacy in collaborative filtering environments. Amongst the
first were anonymization techniques [12], [13]. As [7] dis-

cusses, these techniques are not appropriate for collabora-
tive filtering since there is no guarantee of the quality of the
dataset- allowing users to operate anonymously opens the
system up to a number of attacks, which will quickly over-
come the benefits of having a collaborative filtering system
in place.

Polat and Du [7] describe a method of disguising user rat-
ing data by means of randomized perturbation techniques.
The aim of their work is to modify the user ratings in such
a way that a centralised data collector (which is performing
the collaborative filtering) cannot derive the truthful user
ratings, but can still use the relationships between the items
in a meaningful way. This is a very interesting way of con-
cealing private data, but the approach uses a more relaxed
definition of privacy than we have defined above, since cus-
tomers would still be divulging the information as to what
items they have rated (even though it is disguised). This
difference is highlighted by their conclusions, where they
propose to increase the accuracy of their collaborative fil-
tering system by divulging even more information, such as
the user rating mean. This kind of information may not
compromise the user’s profile, but falls short of the Westin’s
definition of privacy by not allowing users to be in control
of all information that is relevant to their profile.

Canny has also described methods of preserving privacy
in [14] and [15]; these methods focus on creating a pub-
lic aggregate of user data without violating any individual’s
privacy, based on distributed singular value decomposition
of the user rating matrix. This entails creating communi-
ties of users, so that users can seek recommendations from
the most appropriate group, thus opening up the system



to encompass not only specific similarity-based recommen-
dations (derived from personal preferences, such as movie
recommendations), but also allowing heterogeneous recom-
mendations, spanning many different contexts (a scenario
that we do not consider here). The model, however, assumes
that all users will participate in the distributed algorithm,
and as collaborative filtering moves to a more ubiquitous en-
vironment, this assumption may not hold any longer. The
model we have proposed based on concordance allows users
to interact with selected neighbors, without requiring par-
ticipation from them all.

Given that mainstream collaborative filtering systems run
on centralised servers, the hazard becomes storing all usersŠ
data in one location; instead, [5] proposes storing each client
profile on the client side, and only transmitting similarity
measures over the network, using methodologies that link
the ideas of Polat and Du [7], which were designed with
centralised servers in mind, and the peer-to-peer solution
described by Canny [14].

7. CONCLUSION AND FUTURE WORK
Concordance is a new, promising measure of similarity

between users, which allows for distributed collaborative fil-
tering without requiring any profile release from individuals
or contributions by all members of the community to func-
tion. The essence of concordance-based measures is that it
is not the precise rating values, but the proportion by which
two rating sets tend to agree, that is useful when compar-
ing people. Our next step in evaluating the new similarity
measure and the estimation process will be to test it against
more datasets, each with different size and sparsity char-
acteristics, to increase the validity of the results obtained
with the simulation and Netflix dataset. In [9], a num-
ber of other concordance-based measures are discussed, that
deserve closer inspection, both as alternatives to the well-
established methods of collaborative filtering and potential
candidates to support porting these systems to peer-to-peer
environments; the first step in our future work involves a
more comprehensive analysis of the performance of these co-
efficients, on a wider range of datasets and recommendation
aggregation parameters.

There are a number of aspects to this method that are
also open to improvement; one of these is how to cope with
users who have incredibly sparse profiles, or are new to the
system and have provided very little information. However,
the basis of exchanging abstracted profile information in or-
der to estimate profile similarity is already in place. It is
very tempting to offer to improve this estimation method by
relaxing the definition of privacy; however the focus of dis-
tributed recommendation system research should not only
be accuracy but supporting means that encourage all users
to participate, including those that are most concerned about
their privacy.

No matter how strong the privacy level supported by a col-
laborative filtering system is, the security of user’s profiles
is still vulnerable, due to the nature of cooperation between
users to generate recommendations. An attacker could build
a model of a user’s profile by means of a probing attack, re-
questing recommendations for every item. The information
received would allow the attacker to have a good idea of
the user’s tastes, even though it would be based on values
ranging from -1 to 1, which is a linear transformation of the
actual rating values, 1 to 5 (for the Netflix dataset). There-

fore, users will also require means of protecting their profile
as they operate in the collaborative environment; evaluating
their similarity to others without releasing their profile is a
first step that precedes support for evaluating other user’s
behavior, to find those that are trustworthy recommenders.
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