
Temporal Defences for Robust

Recommendations

Neal Lathia, Stephen Hailes, and Licia Capra

Department of Computer Science,
University College London
London, UK WC1 E 6BT

{n.lathia | s.hailes | l.capra}@cs.ucl.ac.uk

Abstract. Recommender systems are vulnerable to attack: malicious
users may deploy a set of sybils to inject ratings in order to damage or
modify the output of Collaborative Filtering (CF) algorithms. To protect
against these attacks, previous work focuses on designing sybil profile
classification algorithms, whose aim is to find and isolate sybils. These
methods, however, assume that the full sybil profiles have already been
input to the system. Deployed recommender systems, on the other hand,
operate over time, and recommendations may be damaged while sybils
are still injecting their profiles, rather than only after all malicious ratings
have been input. Furthermore, system administrators do not know when
their system is under attack, and thus when to run these classification
techniques, thus risking to leave their recommender system vulnerable to
attacks. In this work, we address the problem of temporal sybil attacks,
and propose and evaluate methods for monitoring global, user and item

behaviour over time, in order to detect rating anomalies that reflect an
ongoing attack.

1 Introduction

Recommender systems based on Collaborative Filtering (CF) algorithms [1] have
become important portals via which users access, browse, and interact with a
plethora of web sites, ranging from e-commerce, to movie rentals, and music
recommendation sites. These algorithms are built upon the assumption that
users who have been like-minded in the past can provide insight into each other’s
future tastes. Like-mindedness is quantified by means of similarity metrics (e.g.,
Pearson correlation) computed over users’ profiles: the more items two users have
rated in common, and the more similar the ratings they have associated to these
items, the more like-minded they are considered. Unfortunately, the ratings that
CF algorithms manipulate may not be honest depictions of user preferences,
as they may have been fabricated by malicious users to damage or modify the
recommendations the system outputs. Abusing recommender systems this way is
referred to as shilling, profile injection or sybil attacks; Mobasher et al. provide
an in-depth review of the problem [2].

To protect a recommender system from these attacks, a variety of classifica-
tion algorithms [4] have been proposed, whose goal is to examine users’ profiles,

2 Lathia, Hailes, Capra

determine whether they are honest or malicious, and isolate the latter. However,
these approaches assume that the full sybil profiles have already been created
(i.e., contained within the user-item matrix that CF algorithms operate on). In
deployed recommender systems, such an assumption does not hold: sybil profiles
may be inserted over an extended period of time, thus reducing their immedi-
ate detectability, while not necessarily reducing the damage they may inflict on
the system. Furthermore, system administrators do not know when their sys-
tem is under attack, so deciding when to run these computationally expensive
classification algorithms becomes a fundamental issue.

In this work, we first demonstrate that attackers do have an incentive to
spread their attack over time, as this makes it difficult for system administrators
to know when to run classification algorithms and thus isolate them (Section 2).
We provide a classification of temporal sybil attacks against which a deployed
recommender system should defend itself (Section 3), and then propose and
evaluate our sybil detection technique, which dynamically monitors the deployed
recommender system to reveal anomalies in global, user, and item activity, with
respect to normal user rating habits (Section 4). We then conclude the paper
with a discussion of related work (Section 5) and future directions of research
(Section 6).

2 From One-Shot to Temporal Attacks

In this section, we show that sybils have an incentive to spread their attack over
time, as in so doing they reduce the risk of being detected and thus isolated.
To begin with, we model a deployed recommender system as done in [5]: given
a dataset at time t, and a window size |w| (reflecting how often the system will
be updated), we train the CF algorithm with any data input prior to t and
predict any ratings input between t and (t+ |w|). The entire process is repeated
at each update, with what was previously tested on becoming incorporated into
the training data. To quantify the performance of the recommender system over
time, we re-define the root mean squared error (RMSE) as follow:

RMSEt =

��N
r̂u,i∈Rt

(r̂u,i − ru,i)2

|Rt|
(1)

Given a set Rt of predictions made up to time t, the current error is simply the
average of all predictions made to date.

The one-shot attack considered in the literature operates as follow: if we
indicate with S the set of sybils in the system, and with X the set of ratings they
inject, then all X would be input in the system within a single time window, that
is, between time t and (t+ |w|). We visualise the effect of a one-shot attack with
the following example: we consider five sub-samples of 10, 000 Netflix profiles1,
and weekly system updates (|w| = 7 days); for each of these sub-samples, during

1 http://www.netflixprize.com

Temporal Defences for Robust Recommendations 3

(a) Random Attack (b) Filtering Newcomers (c) Different Attack
Lengths

Fig. 1. Time-Averaged RMSE Of One-Shot Attack; Prediction Shift When Pruning
Newcomer’s Ratings; Injecting Attacks Over Varying Time Windows

the 125th week-long window we inserted 100 sybils who each rate approximately
10, 000 items (in this example, we limit ourselves to exploring the temporal effect
of a random attack, where each sybil randomly picks one of the available items,
and then rates it with a random value drawn uniformly from the rating scale).
Figure 1(a) plots the impact that these ratings have on the time-averaged RMSE.
As shown, the one-shot attack has a pronounced effect on the time-averaged
RMSE: performance is consistently degraded over the rest of the updates.

However, this attack is very simple to detect: sybils appear all at once, rate
high volumes of items within a single window length, and disappear. CF systems
can easily defend against these attacks by distrusting newcomers: ratings coming
from new users are considered suspect and excluded by the CF algorithm; if these
users re-appear in future time windows, their ratings will be subsequently con-
sidered, otherwise they will never influence the recommender systems. We thus
repeated the previous experiment, but excluded suspect ratings from the kNN
CF algorithm. Note that, by excluding suspect ratings, we maintain our abil-
ity to formulate recommendations for all users (including sybil and new honest
users), while removing the influence that suspect ratings exert. Figure 1(b) plots
the difference in prediction (prediction shift) when exercising the same one-shot
attack described above, with and without new ratings being suspected, against
a baseline scenario of predictions computed when no sybils are inserted. Note
that the technique not only eliminates the effect of the attack, but also improves
upon the baseline RMSE in a number of windows prior to the attack taking place
(the prediction shift is negative). Removing the ratings of users who rate and
never return thus curbs these attacks and takes small steps towards de-noising
the data [6].

Attackers may respond to this simple detection technique, by widening the
number of windows taken to inject ratings. Sybils under the attacker’s control
would therefore appear in multiple windows and, after the first appearance, no
longer be suspect. In order to explore the incentives that attackers have to rate
quickly, we performed a number of random attacks, where a set of 100 sybils

4 Lathia, Hailes, Capra

rated the same number of items over a varying number of sequential windows
W ∈ [10, 20, 50, 100]. In each case, the number of malicious ratings remained the
same, the only difference being the time taken to insert them; we compare attacks
of the same magnitude that differ only in temporal spread (i.e., the ratings per
sybil per window varies, as does the number of windows). The results in Figure
1(c) show that injecting ratings over longer time periods deviates the RMSE
from the baseline less. This is likely to be an effect of the balance between sybil
and non-sybil ratings: longer attacks have less of an effect since, during the time
taken to operate the attack, there is a larger influx of non-sybil ratings.

Based on the above experiments, real sybils’ behaviour is unlikely to follow
the one shot pattern. Rather, we have observed that: (a) there is an incentive for
attackers to inject ratings over more than one window, in order to not have their
ratings be suspect and filtered out by simple detection schemes; and (b) attackers
may attempt to displace the balance between sybil and non-sybil ratings, since
higher volumes of sybil ratings per window have more pronounced effects. With
this in mind, we provide next a classification of the types of temporal attacks that
malicious users may undertake, before proposing a defence mechanisms capable
of protecting a recommender system against them.

3 Temporal Attack Model

When enacting a sybil attack, there are two main factors that attackers can
control: the number of sybils perpetrating the attack, and the rate at which
they operate (i.e., number of ratings per sybil per window), for a predefined
sequence of windows. We thus classify attacks according to how malicious users
calibrate these two factors, and determine the four different attack types depicted
in Figure 2(a). Protection mechanisms developed so far in the literature ignore
these two factors and rather focus on another one: the strategy that attackers
deploy in determining what items to rate (i.e, whether at random or targeted),
as if the ratings were input all at once. We take a different stance and look at the
attack while it unfolds: the strategy adopted is then treated as an orthogonal
dimension, with respect to the temporal factors.

Our goal is to provide a monitoring and detection mechanism capable of
alerting the system administrator when any of these attacks is in place. In order
to assess the quality of our monitor, we will be measuring: precision, defined as
the number of attacks that were flagged (true positives) over all flagged situations
(true positives plus false positives); recall, defined as the number of attacks that
were flagged, over all the attacks enacted (true positives plus false negatives);
and impact, defined as the number of sybil ratings input at the current window,
divided by the total number of ratings input in that window. Intuitively, the
higher the precision, the lower the false alarms being raised; furthermore, the
higher the recall, the lower the number of attacks that slip through. Finally,
the impact gives an indication of the damage that an undetected attack (false
negative) is causing; intuitively, the higher the number of malicious ratings that
slip through, the higher the impact. Figure 2(b) illustrates the attack impact

Temporal Defences for Robust Recommendations 5

(a) Attack Classification (b) Impact (No Defences)

Fig. 2. Attack Types and Impact With No Defences

for varying numbers of sybils and rating rates, when no defences are in place
(and thus all attacks pass undetected). In this work, we place higher emphasis
on reducing false negatives (finding all the attacks that we manually insert),
rather than false positives. This is because we cannot know (and only assume)
that the data we experiment with is the fruit of honest, well-intentioned users:
false positives in the real data may very well be attacks that are likely to deserve
further inspection; however, we note that the defences described below produced
no false positives when run on the rating data with no attacks injected.

In the next section, we construct step by step a defence mechanism capable of
defending a recommender system against the temporal attacks identified above.
We do so by reasoning about factors that attackers cannot control, related to
how the non-sybil users behave: how many non-sybil users there are, the number
of ratings they input per window, what they rate, and how they rate.

4 A Temporal Defence

In this section, we focus on each type of attack in turn, and construct a com-
prehensive mechanism capable of detecting them all. The mechanism monitors
different types of information to detect anomalies: global behaviour (Section
4.1), user behaviour (Section 4.2), and item behaviour (Section 4.3). Key to our
proposal is the capturing of stable features in the rating data, so that anomalies
introduced by attacks can be flagged.

4.1 Global Monitoring - Many Sybils/Many Ratings Scenario

The first perspective of system behaviour that we consider is at the global, or
aggregate, level. While the number of ratings that users input varies over time,
the average ratings per user per window (in the Netflix data) remains relatively
flat: Figure 3(a) plots this value over time. From this, we see that the average
user rates between 5 − 15 movies per week. Since the mean is derived from

6 Lathia, Hailes, Capra

(a) Avg Ratings Per User Per
Week in Netflix

(b) Simulation Precision

(c) Simulation Recall (d) Global Monitoring - Impact
in Netflix

Fig. 3. Global Monitoring

a long-tailed distribution, it is a skewed representation of the “average” user.
However, when an attacker deploys a large group of sybils, this aggregate value
changes: the first dimension of our defence thus aims at monitoring changes to
the average ratings per user MUt over time. Given a window t, the current mean
ratings per user MUt, standard deviation σt, the Rt ratings input by Ut users,
and a weighting factor βt, an alarm is raised if the volume of incoming ratings
departs from the mean measured to date by an amount determined with a global
threshold αt ≥ 1:

Rt

Ut
≥ (MUt + (αt × σt)) (2)

If an alarm is not raised, we update the current MUt value as an exponentially
weighted moving average:

MUt = (βt ×MUt−|w|) + ((1− βt)×
Rt

Ut
) (3)

MUt is updated conservatively : if an attack is flagged, then it is not updated.
We also conservatively update both the αt and βt variables. The βt variable

Temporal Defences for Robust Recommendations 7

determines the weight that is given to historical data: relying too heavily on
historical data will not capture current fluctuations, while weighting current
values too highly will disperse temporal trends. We therefore update βt with the
standard deviation measured to date:

βt+|w| = max(|σt−|w| − σt|, 1) (4)

The value is capped at 1, thus ensuring that when there is high variability in
the data, βt gives higher preference to current values, while a smaller standard
deviation shifts βt to give higher weight to historical values. The αt variable
determines the extent to which the current Rt

Ut
value can deviate from MUt

before an attack is flagged. When an attack is flagged, we reduce αt, making it
more difficult for attackers to learn the appropriate threshold. In this work, αt

jumps between pre-specified values (0.5 and 1.5). This parameter is sensitive to
the context; we selected these values after examining our scenario (users rating
movies). We leave a more in-depth investigation of scaling the threshold as a
matter of future work.

Monitoring incoming ratings at the aggregate level is sensitive to two factors:
how naturally variable the incoming ratings are, and the amount of variance that
attacks introduce: a mechanism like this may not work if there is already high
variance in the average ratings per user and sybils do not displace the mean
value. We therefore evaluated this technique with two methods: in the first, we
simulate a stream of incoming ratings (in order to control both the variance and
size of attack); we then turned to real data where we could explore the effects
of varying attacks in a more realistic setting.

In order to simulate a stream of incoming ratings, we draw a sequence of Rt
Ut

values from a normal distribution with mean µ and standard deviation σ ∈ [0, µ].
Then, at random moments, we simulate an injected attack where a group of
sybils shifts the incoming value by the attack amplitude γ ∈ [0, (2×µ)]; in other
words, at an attack time t, the window’s value is (Rt

Ut
+γ). We then note whether

an attack was flagged, and can compute the detection precision and recall with
the results. When running the simulation, we assumed that, after a brief train-
ing phase, the system could be attacked at any time during a period of 1, 000
windows, for a pre-determined number of sequential attack windows (we used a
value of 50, as this gives the attack high impact while being difficult to detect -
see Figure 1(c)). We re-ran each simulation parameter setting 10, 000 times and
present averaged results. Figure 3(b) shows the resulting precision, which fades
as σ increases. The main point to note is that precision is dependent on σ (the
variability in the ratings per user per window) rather than the attack ampli-
tude γ. In other words, the number of false positives depends on how naturally
variable the data is. Figure 3(c), instead, displays the detection recall. This plot
highlights the trade-off between σ and γ: the best recall is when a small σ is
modified with a large γ, while the worst values are found when a large σ is devi-
ated by a small γ. Note that, in this simulated setting, the minimum precision is
slightly below 0.90, and the minimum recall remains above approximately 0.95:
we thus consistently get high precision and recall.

8 Lathia, Hailes, Capra

We returned to the Netflix dataset in order to test this method when injecting
attacks on real data. To do so, we trained our monitor with all ratings per window
until the attack time, and then measure the attack impact after injecting the
attack. Since the attacker may unleash the sybils at any time, we repeated our
experiments, starting attacks at each possible window, and plot average results
across all windows. As Figure 3(d) shows, this method catches attacks where
large groups of sybils inject their profiles at a very high rate; the top right corner
of the plot is flattened to zero impact. However, two sensitive areas remain: first,
where many sybils inject few ratings, and when few sybils inject many ratings.
Attackers can thus respond by either reducing the size of the sybil group, or the
sybil’s rate. In Section 4.2 we address the former, while Section 4.3 describes
how to detect the latter.

4.2 User Monitoring - Few Sybils/Many Ratings Scenario

The previous monitor cannot detect when few sybils rate many items each.
We address this by designing a user monitor aimed at detecting these specific
attacks. Figure 4(a) plots the distribution of ratings input per user in a sample
window of the Netflix data; we find that the majority of users input a rather
low number of ratings per week, while a minority of outliers rate a high volume
of movies. An attack in this context would thus entail setting a small group of
sybils to rate a high volume of content over a number of windows; detecting this
behaviour focuses on examining how many high volume raters there are and how
much these outliers are rating.

(a) How Much High Volume Raters Rate. Given the current mean
value of ratings per user per window MUt, we differentiate high from low volume
raters based on the difference between the ratings that they have input in the
current window andMUt. Figure 4(b) plots the ratings per high volume user over
time. The mean ratings per high volume user HMt can then be monitored, in a
similar way as we monitored the entire distribution in the previous section: an

(a) Example Ratings Per
User (1 Week)

(b) Ratings Per High Vol-
ume Raters Over Time

(c) Proportion of High
Volume Raters Over Time

Fig. 4. Analysis of Users’ Behaviour in Netflix

Temporal Defences for Robust Recommendations 9

(a) Single Thresholding (b) Combined Threshold

Fig. 5. User Monitoring

exponentially weighted moving average is regularly updated, and large deviations
from the expected value flag an ongoing attack.

(b) How Many High Volume Raters. Beside the high volume ratings
HMt, we also keep track of how many users HUt there are relative to all the
users who have rated in the current window. A user becomes suspect if they are
at the highest end of the user-rating distribution, and both the size of this group
and volume of ratings they input may indicate an ongoing attack. As we plot
in Figure 4(c), the size of this group of users, divided by the total number of
high volume raters per window, tends to be relatively stable; injecting different
forms of attacks upsets both this and the mean ratings per high volume user
values. We take advantage of both pieces of information in order to amplify our
detection mechanism: we create a combined score per window by multiplying the
HMt value by the proportion of suspect users HUt. This way, we aim to capture
fluctuations in both the group size and rate that a potential group of sybils will
inflict when performing their attack.

We evaluated the user monitor with the Netflix subsets for cross-validated
results with real data. We did so in two steps. First, Figure 5(a) shows the
resulting impact if only part (a) of above is used to defend the system: this
defence can overcome both scenarios similar to that addressed in the previous
section, and also lessen the threat of smaller groups of high-volume rating sybils.
This threat is not fully eliminated though: the top-left corner of the plot shows
a remaining non-zero impact section (more precisely, impact is approximately
[0, 0.25]). In Figure 5(b), we plot the impact of the combined defences: this time,
the impact decreases to [0, 0.12]. There is now only one type of attack left, where
many sybils rate few items. We tackle this scenario next.

4.3 Item Monitoring - Many Sybils/Few Ratings Scenario

The last scenario that we address is that of many sybils rating few items each.
This form of attack would be undetected by the previously outlined defences:

10 Lathia, Hailes, Capra

the sybils do not rate enough items each to be detected by the user monitor, and
there are enough of them to not shift the rating per user temporal mean and flag
their presence. To detect this kind of attack, we first reason on what items the
group of sybils may be rating, and then design and evaluate an item-monitor to
identify ongoing anomalous behaviour.

In order to have the greatest impact possible, sybils who inject very sparse
profiles (by rating few items each) will tend to be rating a similar subgroup
of items, rather than dispersing the ratings over a broad range of items, which
would have a smaller effect. This strategy recalls the structure of targeted attacks
[2], where injected profiles contain filler, selected, and target item ratings: for
example, if an attack aims to promote a fantasy movie (target), the sybils will
rate it, alongside famous fantasy movies (selected) that are likely to appear in the
profiles of many honest users, together with a number of items (filler) to disguise
each profile as a “normal” user profile. The difference between a random attack
and a targeted one is thus determined by how profiles are populated: what the
selected, filler, and target items are (in the case of a random attack, there is
no target item) and how they are rated. We therefore turn to monitoring the
items in a system to detect these kinds of attacks. We further assume that it is
very unlikely for an item that is already popular to be subject to an attack that
aims to promote it; similarly, it is unlikely that unpopular items be nuked. In
other words, we assume that the purpose of attackers is to maliciously reverse an
ongoing trend (rather than reinforce a pre-existing one). Given this, we design
an item monitor to identify the target of attacks by focusing on three factors:
(a) the amount that each item is being rated, (b) the distance the mean of the
incoming ratings for each item has from an “average” item mean, and (c) a
temporal mean change detector.

(a) The Item Is Rated By Many Users. In each window w, with Rt

ratings input for It items, the average ratings per item MIt (with standard
deviation σi,t) can be computed. We can then select, from the available items,
those that have been rated the most in the current window by selecting all those
that received It ratings greater than the mean number of ratings per item MIt.

(b) The Item is Rated With Extreme Ratings. Using only the ratings
input in the current window w, we determine the mean score r̄i for each item i,
and then average these to produce the expected mean score v per item:

v =
1

It

�

i∈It

r̄i (5)

If an item has been targeted for attack (and either nuked or promoted by a group
of sybils simultaneously), then the corresponding r̄i will reflect this by being an
outlier of the global average item mean v.

(c) The Item Mean Rating Shifts. We compare the item mean computed
with historical ratings and the r̄i value determined from the ratings in the current
window. A successful attack will shift this value by some distance δ: in this work,
since we are operating on the Netflix 5-star ratings scale, we set δ to slightly
below 2.

Temporal Defences for Robust Recommendations 11

(a) Avg Precision (b) Avg Recall

Fig. 6. Item Monitoring

An attack is flagged for an item if the above three conditions are met: it
is rated more than average, the mean of the incoming ratings shows that it
is not being rated in the same way as other items are, and a change from the
historical value is being introduced. Our monitor therefore focuses on identifying
the moments when groups (or subgroups) of sybils rate the target item. We
therefore modified our evaluation mechanism to test how well we find items when
they are attacked, depending on how many sybils push in the target rating at
the same time.

We evaluated the monitor as follows: at time t, a group of sybils rates a
randomly chosen target item. The sybils nuke the item if it is popular (it has
mean greater than 3), and promote it otherwise. We do not discriminate on the
number of ratings that movies currently have when determining whether to nuke
or promote it; however, previous work shows that it is harder to protect sparsely
rated items from attack [7], and our item selection process is biased toward
selecting these items. We then check to see if the monitor flags any suspicious
items, and measure the number of true/false positives and false negatives. We
repeat the same run (i.e., group size and attack window) for 50 different items,
and measure the resulting precision and recall. However, since an attack may
begin in any of the available windows, we then repeat this process for each
possible window, and average the results across time. Finally, we repeat this
entire process with each Netflix subset to produce cross-validated results. The
results therefore take into account the differences between sybil group size, target
item, attack time, and honest user behaviour. The average precision and recall
values are plotted in Figures 6(a) and 6(b). They highlight that these methods
work best when many sybils are rating the same item, with recall near 99% and
precision near 70%. The fact that the precision is not performing as well as the
recall implies that there are a higher proportion of false positives rather than
false negatives: when an item is under attack, it is likely to be flagged as such, but
few items that are not attacked may be flagged as well. As with the user monitor,
it remains unclear as to how to deal with items that are being rated anomalously

12 Lathia, Hailes, Capra

by users who are not the sybils that we explicitly control in our experiments;
in fact, we can only be certain that users are malicious if we explicitly injected
them. Otherwise, we have assumed that the users in the dataset are honest and
well-intentioned, which may not be the case: it is therefore preferable, in this
case, to have a monitor with higher recall than precision, since we are sure that
the sybils we inject are being found.

5 Related Work

Anomaly detection algorithms have been used when securing a wide range of
systems: they defend against financial fraud [8] and protect web servers from
denial of service attacks [9]. These techniques are applicable to recommender
systems too, the main problem being how to define what an anomaly is, and
how to monitor the large volume of users and items. In this work, we have
introduced novel methods that detect anomalies in various aspects of rating
behaviour while learning what normal user behaviour is, thus liberating system
administrators from these challenges. To do so, we leveraged the effect that
honest users have on the temporal dynamics of the system. For example, we
used the fact that majority of users rate very few items in order to identify the
sybils who are rating a lot. The only way that sybils may dodge pushing the
monitored variables over the detection thresholds is by not rating : our defences
thus act as an incentive for attackers to draw out the length of their attack, thus
reducing its overall effect (as seen in Section 2).

Anomaly detection has also been seen before in recommender system re-
search. Bhaumik et al. [10] propose a method to monitor items as they are
under attack, by looking at changes to an item’s mean rating over time. Sim-
ilarly, Yang at al [11] infer user trust values based on modelling the signal of
incoming ratings. They use these techniques to monitor when real users, who
each control 50 sybils, are attacking a system. To that extent, their system is
under a variety of potentially conflicting attacks. Our work differs on two main
points: first, we evaluate a system that iteratively updates and computes per-
sonalised recommendations for each user. We also propose methods that assume
a large set of users and items, and flag attacks while monitoring all users and
items (rather than simply monitoring users/items individually). We evaluate at-
tacks that may not demonstrate anomalies within a single time window, but
appear between system updates, and may be targeted to affect particular users’
recommendations. We also explore a wide variety of attacks, ranging from the
random to targeted scenarios, where a key aspect of the attacks is the fact that
sybil groups of varying size are rating items.

The idea of temporality in attacks has also been explored from the point
of view of user reputation; Resnick and Sami [12] prove a variety of properties
of their reputation system, which takes into account the order that ratings are
input. It remains unclear how these systems would work in practice: many rep-
utation or trust-based systems assume that the ratings input by users are the
ground truth, without taking into account that users are both naturally incon-

Temporal Defences for Robust Recommendations 13

sistent when they rate [6] and what they rate will be influenced by what they are
recommended. Furthermore, one of the most troubling problems that both mon-
itoring techniques and reputation systems suffer from is bootstrapping ; systems
can be easily abused when the variables that monitor or reflect user behaviour
have had little to no data. In this work, we use all ratings input prior to a pre-
specified time � to bootstrap each monitor. System administrators may opt to
ask a controlled, closed group of trusted users to rate for varying lengths of time
in order to bootstrap. Alternatively, if the system also offers social networking
functionality, defences that identify sybils according to their location on the so-
cial graph can be applied [3]; in this work we assumed that no such graph was
present.

6 Conclusion and Future Work

In this work, we have confronted the problem of sybil attacks to deployed rec-
ommender systems, where sybil groups (of varying size) inject item ratings (at
varying rates) over time in order to either disrupt the system’s recommenda-
tions (via a random attack) or modify the recommendations of a particular item
(with a targeted attack). We introduced a windowed-view of temporal behaviour,
defined a classification of temporal attacks, and then designed and evaluated a
global, user, and item monitoring mechanism that flags when different forms of
attack are taking place. Our work centred on the Netflix dataset: we captured a
variety of features of this data that remain stable over time and are noticeably
affected by a sybil attack. There are a number of other strategies that attack-
ers may adopt, such as the bandwagon or average attacks strategies [2] when
unleashing a set of sybils that we have not explored above. Our detection mech-
anism, in focusing on complimentary dimensions of attacks (the group size and
rate of sybils as they attack), aims to detect attacks regardless of the adopted
strategy.

Our ongoing and future work spans many directions: we have started broad-
ening the range of datasets that we apply these defences to, in order to see how
varying contexts (i.e., rating movies, music, places) change the stable factors
that we take advantage of. We are also conducting experiments in less homoge-
neous settings, where different types of attacks are taking place simultaneously,
to assess the precision, recall and impact of our monitors when combined. In this
work, we assumed that the rate at which profiles are populated is roughly similar
across sybils and constant in time; our future work aims to remove this assump-
tion, thus addressing the case of attackers that incrementally change the rate of
attack, to avoid exceeding the current thresholds and thus pass undetected. Note
though that it is extremely difficult for attackers to know the values of current
thresholds, as they vary with the updating of the exponentially weighted moving
averages; experimenting, in order to discover the thresholds, would be difficult
since avoiding detection in one window does not guarantee that the same rate
will avoid detection in the next.

14 Lathia, Hailes, Capra

References

1. G. Adomavicius and A. Tuzhilin. Towards the Next Generation of Recommender
Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE TKDE,
17(6), June 2005.

2. B. Mobasher, R. Burke, R. Bhaumik, and C. Williams. Toward Trustworthy Rec-
ommender Systems: An Analysis of Attack Models and Algorithm Robustness. In
ACM TOIT, 2007.

3. H. Yu, M. Kaminsky, P. Gibbons, and A. Flaxman. SybilGuard: Defending Against
Sybil Attacks Via Social Networks. In ACM SIGCOMM, volume 4, pages 267–278,
Pisa, Italy, 2006.

4. C. Williams, B. Mobasher, and R. Burke. Defending Recommender Systems: De-
tection of Profile Injection Attacks. Journal of Service Oriented Computing and

Applications., August 2009.
5. N. Lathia, S. Hailes, and L. Capra. Temporal Collaborative Filtering With Adap-

tive Neighbourhoods. In ACM SIGIR, Boston, USA, 2009.
6. X. Amatriain, J.M. Pujol, N. Tintarev, and N. Oliver. Rate it Again: Increasing

Recommendation Accuracy by User Re-Rating. In ACM RecSys, New York, USA,
2009.

7. S. K. Lam and J. Riedl. Shilling Recommender Systems for Fun and Profit. In
Proceedings the 13th International Conference on World Wide Web, New York,
USA, 2004.

8. S. X. Wu and W. Banzhaf. Combatting Financial Fraud: A Coevolutionary
Anomaly Detection Approach. In 10th Annual Conference on Genetic and Evolu-

tionary Computation, pages 1673–1680, Atlanta, GA, USA, 2008.
9. V. A. Siris and F. Papagalou. Application of Anomaly Detection Algorithms for

Detecting SYN Flooding Attacks. Computer Communications, 29:1433–1442, May
2006.

10. R. Bhaumik, C. Williams, B. Mobasher, and R. Burke. Securing Collaborative
Filtering Against Malicious Attacks Through Anomaly Detection. In Proceedings

of the 4th Workshop on Intelligent Techniques for Web Personalization (ITWP’06),
Boston, July 2006.

11. Y. Yang, Y. Sun, S. Kay, and Q. Yang. Defending Online Reputation Systems
against Collaborative Unfair Raters through Signal Modeling and Trust. In Pro-

ceedings of ACM SAC TRECK, 2009.
12. P. Resnick and R. Sami. The Influence Limiter: Provably Manipulation Resistant

Recommender Systems. In Proceedings of Recommender Systems (RecSys ’07),
Minneapolis, USA, 2007.

