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ABSTRACT
As the public transport infrastructure of large cities ex-
pands, transport operators are diversifying the range and
prices of tickets that can be purchased for travel. However,
selecting the best fare for each individual traveller’s needs
is a complex process that is left almost completely unaided.
By examining the relation between urban mobility and fare
purchasing habits in large datasets from London, England’s
public transport network, we estimate that travellers in the
city cumulatively spend, per year, up to approximately GBP
200 million more than they need to, as a result of purchasing
the incorrect fares.
We propose to address these incorrect purchases by lever-

aging the huge volumes of data that travellers create as they
move about the city, by providing, to each of them, person-
alised ticket recommendations based on their estimated fu-
ture travel patterns. In this work, we explore the viability of
building a fare-recommendation system for public transport
networks by (a) formalising the problem as two separate pre-
diction problems and (b) evaluating a number of algorithms
that aim to match travellers to the best fare. We find that
applying data mining techniques to public transport data
has the potential to provide travellers with substantial sav-
ings.

Categories and Subject Descriptors: H.3.3 [Informa-
tion Search and Retrieval]: Information Filtering

General Terms: Algorithms

Keywords: Mobility, Public Transport, Filtering, Recom-
mender Systems

1. INTRODUCTION
At face value, the problem of buying a ticket for travel on

an urban public transport system seems simple and mun-
dane. However, this is only the case for cities where there is
only one fare or ticket type available for purchase. Increas-
ingly, various metropolises around the world are diversifying
the fares that they offer, in order to cater for the different
needs of the city’s residents: they may offer single, multi-
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trip, and tourist (or visitor) tickets, as well as tickets that
restrict travellers to specific transport modalities (e.g., a bus
or train-only ticket). Invariably, all of these tickets are of-
fered at different prices. Travellers are now faced with the
problem of having to purchase a ticket from a large list of
candidate fares, by first estimating their own future travel
needs, and then selecting the one that seems to cater for
their needs best.

The public transport network in London, UK is a prime
example of this scenario. The rich pricing scheme operated
by Transport for London (TfL) introduces a variety of ticket
options that range in price, transport modality, temporal
validity and geographical boundaries. In fact, the optimal
ticket for each of the city’s travellers will depend on who they
are (which determines which discounts they are eligible for)
and three factors that directly affect cost: where they travel
to and from (i.e., their geographic requirements), when they
travel (e.g., rush-hour or day time) and how frequently they
move between places, over time periods that span from sin-
gle days to an entire year. While these multiple behavioural
dimensions influence what the cheapest travel option will be,
the current ticket sales process has no transparent link be-
tween usage and pricing: the decision of the best ticket is left
unaided to each individual traveller. As a result, travellers
are never informed as to whether they are indeed making the
best decisions for themselves. TfL itself estimates that over
GBP 300,000 is wasted per day by passengers buying paper
tickets instead of opting for the electronic equivalent1, and
other investigations have revealed that approximately GBP
30 million of travel credit is sitting in the system, idle and
unused2. These vast sums of wasted money all point to the
fact that making the correct decision at the point of pur-
chase is not only uninformed and lacking in transparency,
but also incredibly difficult for travellers to reason about, in
order to purchase the cheapest fare for themselves.

There are two significant obstacles confronting this com-
plex decision: first, travellers need to understand the rela-
tionship between mobility and fares. To that end, we de-
scribe London’s current pricing system in Section 2, which
includes 7 temporal, 9 geographical, and 12 user categories,
with the various conditions that influence the suitability of
certain tickets for travellers. Second, each traveller needs
to rely on her own memory and anticipated mobility pat-
terns in order to decide what the best ticket will be. This is
where the greatest opportunity for data mining lies: Lon-
don’s RFID-based Oyster card, much like Seattle’s Orca

1
http://golondon.about.com/od/londontransport/qt/oyster card.htm

2
http://www.bbc.co.uk/news/10162991



card or the Tokyo Metro system’s tickets (based on near-
field mobile phone communication) is a uniform payment
system that produces a digital record every time a trip is
made and a ticket is purchased. Mining the travel data that
is created as travellers enter and exit stations can be used
to aide them when purchasing tickets. In this work, we pro-
pose and evaluate recommendation algorithms that aim to
leverage each traveller’s mobility patterns in order to deter-
mine what the best fare is for each unique individual. In
particular, we make the following contributions:

• We present an extensive analysis of anonymised ticket
purchasing behaviour and public transport usage data-
sets (Section 3); we link the two datasets in order to
examine the relation between mobility and purchase
habits and quantify the extent that London travellers
waste money by buying the incorrect fares: our data
shows that travellers overspend by approximately GBP
200 million per year by buying the incorrect fares.

• We compliment this analysis with the results of a sur-
vey (Section 3.3) that explores the heuristics and meth-
ods that travellers currently adopt when selecting the
best fare for themselves.

• We design and evaluate (Section 4) algorithms that
provide personalised ticket-purchase recommendations
to travellers with an available travel history. We do so
by splitting the problem into two: predicting future
travel habits and matching travel habits to fares. We
evaluate our proposals with accuracy metrics and by
quantifying how much money travellers in our datasets
could have saved (had they followed our recommenda-
tions).

We recognise that our contributions may reduce the gross
income of travel operators. However, these systems can be
used to encourage the adoption of public transport by pro-
moting the cost-effectiveness of travel.

2. BACKGROUND
The services and pricing structures adopted by public

transport authorities around the world are not uniform. How-
ever, in general, all systems will have an inherent relation
between usage and pricing. In this work, we focus on Lon-
don, England, due to the availability of data (although we
note that our techniques could easily be adapted to other
systems). The TfL public transport infrastructure is a vast,
multi-modal network of underground trains (11 intercon-
nected lines with 270 stations), overground trains (5 lines
with 78 stations) and buses (about 8,000 buses serving 19,000
stops) as well as trams, river services, and other specialised
services. At the broadest level, travellers must opt to either
use a single, contact-less smart card (the Oyster card) to
pay for their journeys or buy paper-based tickets. In or-
der to encourage the use of the Oyster card, facilities are in
place for travellers to automatically add credit to their card
(auto top-up) and buy or renew travel passes online and us-
ing machines in each station; the ease of purchase of all fares
on the Oyster card is roughly similar. However, use of an
Oyster card does not determine what fares travellers should
buy. In particular, there are a number of factors that must
be considered when selecting tickets:
1. User Categories. There are 12 user categories, rang-

ing from full fare-paying adults, to students, children of

varying age ranges, disability/60+“freedom” passes (which
entitle bearers to free travel), war veterans, bus discounts,
groups and school parties. If any of these users also have
one of many different additional cards (e.g., a National Rail
membership card), they are entitled to further discounts.

2. Modality Restrictions. There are some tickets that
are for exclusive use on the bus network, while others do not
limit the transport modality that the traveller opts for.

3. Geographic and Routing Restrictions. The TfL
rail network is subdivided into nine concentric zones. Zone
1 covers central London and higher-numbered zones are pro-
gressively further away from city centre. The cost of travel
by train is influenced by the number of zones that are tra-
versed; for example, a rush-hour single fare from Zone 6 to
Zone 2 that goes via Zone 1 costs GBP 4.50, while the fare
for a trip between the same zones, without going via Zone
1 costs GBP 2.50. There are particular cases where the ac-
tual route that is taken will change the cost. For example, a
rush-hour single between Zones 1 and 2 (e.g., Goodge St to
Archway) costs GBP 2.50, but if mobility is restricted to the
Euston-Watford Junction train line (e.g., Euston to South
Hampstead), the fare is GBP 2.00.

4. Travel Cards or Pay As You Go. Travellers can
opt to pay for their trips on a per-trip basis (using “pay
as you go”, PAYG, fares), or use 7-day, monthly, or annual
passes, also called travel cards, which allow for unlimited
travel within purchased zones. It is important to note that
PAYG and travel card use is not mutually exclusive. Trav-
ellers can opt for combinations of the two; for example, they
can buy a Zone 1 to 2 travel card and then use pay as you
go for any travel that goes beyond these Zones (both tickets
are stored within the same physical Oyster card). In this
case, they will be charged a mixed fare, which corresponds
to the PAYG cost for a single fare in the zones that are not
covered by their travel card.

5. Temporal Categories. TfL has defined two distinct
travel times: peak times, 6:30-9:30AM and 4:00-7:00PMMon-
day to Friday (reflecting the rush-hour commuting trav-
ellers) and off-peak, 9:30AM-4:00PM and after 7PM during
week days and all of weekends and public holidays. PAYG
as well as day-only travel card prices tend to, but do not
always, differ in price between these times (note that the
weekly/monthly/annual travel cards do not differentiate be-
tween peak and off-peak travel).

6. Additional Conditions. TfL has also implemented
a price capping system for Oyster cards to limit the amount
of PAYG credit that any one traveller can use in a single
day. If a traveller has so many trips in one day such that it
would have been cheaper to travel with a day pass, then the
fare that will be charged will be the price-cap limit, which
is the same as the day travel card ticket price (although
there are separate peak and off-peak limits). Unfortunately,
the capping does not transfer daily cards to further time
periods (e.g., weekly, monthly), regardless of whether the
latter would have been cheaper or not.

All the above conditions and related fare prices are subject
to an annual review and continuous changes. Inextricably,
a number of sub-optimal choices can easily be made: for
example, using PAYG will be more expensive than travel
cards for high frequency travellers. In this work, we will fo-
cus on full-fare paying adult tickets. How do travellers make
purchases in this environment? In the following section, we
examine the relation between mobility and purchase deci-



(%) Type
Pay As You Go

49.8 ≤ GBP 5
24.2 GBP 5.01 - GBP 10
15.5 GBP 10.01 - GBP 20
7.7 GBP 20.01 - GBP 30

Travel Cards
70.8 7-day travel card
15.8 1-month travel card
11.6 7-day bus/tram pass
1.9 1-month bus/tram pass

(a) Top-4 Purchase Types (b) Weekly Purchase Distribution (c) Week Ongoing Journeys

Figure 1: Fare Purchases: (a) the most frequently bought travel cards and top-up amounts, (b) when people
purchase over a cumulative week, and (c) the cumulative ongoing (rail) journeys across a week.

Name Users Rail/Tube Trips Bus Trips
D1 264,304 4,350,039 5,014,664
D2 267,357 4,315,821 4,734,435

Table 1: Two 83-day Travel history datasets of a 5%
sample of TfL travellers. D1 is May-July 2009, D2
is October 2009-January 2010.

sions by analysing two large datasets of London trips and
fare purchases.

3. MOBILITY AND TICKET PURCHASES
In this section, we first analyse anonymised purchase and

travel behaviour data from TfL (Section 3.1), highlighting
emerging trends and consistencies in both travellers’ move-
ments and purchases. We then quantify how much travellers
overspend, by computing the cheapest fares for the trips they
took (Section 3.2). Finally, we investigate the heuristics that
travellers adopt to support purchase decisions, by reporting
the results of an online survey (Section 3.3).

3.1 Dataset Analysis
In this analysis, we use two pairs of datasets of Oyster card

usage from different 83-day periods (May-July 2009 and Oc-
tober 2009-January 2010). Each dataset is a 5% sub-sample
of all users who were recorded during the two periods. The
mobility datasets (D1 and D2), contain the travel history
of the sampled users: an anonymised, unique user id, the
modality, origin, destination, the journey’s start and end
times in minutes, and the travel ticket type as recorded by
the user’s Oyster card (note that, as travellers are not re-
quired to use their card to exit buses, we only have origin
and start time for these trips; this does not affect pricing
as bus fares do not depend on the trip destination). The
purchase history datasets (P1 and P2) contain both PAYG
credit and travel card purchases during the same time frame,
along with where (which station), when (which day), and
how much credit/what type of travel card (temporal and
geographical boundaries) was purchased. Together, the two
datasets sum to traveller spending of over GBP 500 million.
We took a number of steps to clean the data. First, the

datasets suffer from the edge effect : some users will be mak-
ing trips with travel cards that were purchased prior to the

Name Number of Purchases
PAYG TravelCards

P1 1,646,987 134,721
P2 1,732,583 125,704

Table 2: Ticket purchase datasets from the same
users and date ranges as Table 1.

purchase history date range that we observe. Second, the
purchase data has missing entries, potentially due to lost
data from ticket sales done through authorised retailers.
Note that, since PAYG fares are paid on a per-journey ba-
sis, these entries do not have this problem. To compensate
for the edge effect, we pruned the profiles of those travellers
who use travel cards until the date of the first (observed)
purchase. If there was no observed purchase, or the trav-
eller was using an annual card, we removed them from the
dataset; we lost approximately 20% of the users. We then
pruned any inconsistent or erroneous entries (trips with the
same origin and destination, with end times prior to start
times, or with unknown tickets), and then sampled all adult
Oyster cards to produce the final datasets; an overview of
these is provided in Tables 1 and 2. In this section, we anal-
yse the combined datasets in order to examine the relation
between purchase behaviour and mobility.

1. Ticket Purchases: travellers buy credit in small
increments. Figure 1(a) shows the top-4 most popular
travel card purchases (grouped by temporal validity) and
PAYG credit amounts (grouped in GBP5 increments); these
account for, respectively, 95.5% and 98.6% of all the pur-
chases. This clearly shows that travellers tend to opt to buy
credit in small increments: half of the credit purchases are
less than GBP 5 and 74% are less than GBP 20, which in-
dicates that credit is bought on an as-required basis. 7-day
long passes are the most popular travel card purchase. We
inspected this further by looking at the use of travel cards
and PAYG by individual travellers. Overall, a majority of
travellers do not use travel cards: 75.9% and 77% of the users
in D1 and D2 respectively never make a trip with a travel
card. However, travel cards are used more often than PAYG
on bus trips (70% of trips are made with travel cards); hav-
ing a travel card is an incentive to use the bus. This trend



(a) Zone Purchase Distribution (b) Geographic Flow by Zone (c) Repeat Trips and Purchases

Figure 2: Pay As You Go Credit and Travel Cards: (a) the geographic purchase distribution, by zone, (b) the
cumulative number of entries and exits (flow) into Zone 1 and outside Zone 1, and (c) the average proportion
of repeat trips and purchases in the datasets over time.

flips for rail trips (38.2% travel card, 59.4% PAYG), with
the remaining fraction being mixed fares.
2. Temporal Distribution: travel cards are bought

on Mondays. Figure 1(b) shows the temporal distribution
of purchases in a week: while credit purchases tend to re-
main constant throughout the week, travel cards are mostly
bought in the early days of the week. Again, travellers are
viewing the system on a weekly-basis, and may thus be dis-
counting the potential benefit of month/year passes. Figure
1(c) shows the the cumulative number of ongoing trips over
7 days; the commuting majority dominate over the week day
patterns.
3. Geographical Distribution: PAYG travellers do

not plan ahead. Figure 2(a) plots the geographic distri-
bution of purchases, split by fare zone (recall that Zone 1 is
central London, with higher zones being concentric circles
around it). The majority of PAYG purchases occur within
Zone 1, while there are more travel cards bought in Zones
2 and 3 than central London. A potential explanation for
this comes from the aggregate trip data. After clustering
the stations by fare zone, we can count arrivals (+1) and
departures (–1) from each zone and sum these two together.
At any given time period, a zone’s flow is positive if there
are more arrivals than departures, and negative if there are
more departures than arrivals. The resulting data is shown
in Figure 2(b). The only zone to be positive in the morning
(arrivals) and negative in the afternoon (departures) is Zone
1; all other zones, which have been grouped in Figure 2(b),
each individually show departure trips in the morning and
arrival trips in the afternoon/evening. Relating purchase be-
haviour to traveller flow indicates that PAYG credit, must
be mainly purchased between commuter’s outbound and re-
turn journey, while travel cards are more frequently bought
before or after the day’s travel.
4. Repeat Behaviours: travellers do the same

thing again and again. To what extent are travellers
making the same trips and buying the same fares repeat-
edly? We examined this question by defining a repeat trip
made by an individual as a train trip with the same origin
and destination as a previously taken trip (we do not include
bus trips since we do not know where travellers alighted).
Similarly, we defined a repeat purchase as either a PAYG
credit purchase with exactly the same amount as has been

purchased before, or a travel card that has been bought be-
fore. After the 83 days of each dataset, we find that over
half of all the trips and purchases have been seen before, as
shown in Figure 2(c): travellers are highly regular in both
their movements and purchases.

Based on the above analysis, two facts emerge: (1) there
exists high regularity (and thus predictability) of both travel
behaviour (Figures 1(a) 1(b) 1(c)) and of purchase behaviour
(Figures 1(a) 2(c)); (2) there exists a strong correlation be-
tween travel behaviour (e.g., what travel zones are crossed)
and purchase behaviour (e.g,. what ticket type, PAYG ver-
sus travel card are purchased) (Figures 2(a) 2(c)). However,
a question arises as to whether this repeated correlation be-
tween travel and purchase behaviours is optimal, or whether
travellers are wasting their money instead. In the following
section, we quantify how much people overspend by com-
puting the optimal fares for each traveller.

3.2 Potential Savings
In this section, we look at what travellers could have saved,

had they made the optimal purchase decisions for all their
travel habits, that is, had they known, a priori, exactly what
trips they were going to make and purchased the cheapest
sequence of fares. We first encoded the tube network struc-
ture and implemented Floyd’s algorithm [1] to find the short-
est path between any origin and destination (by number of
hops). This way, we can infer which zones each trip should
traverse and thus which PAYG, travel card, and mixed fares
are applicable. Although our data is from 2009, we used
2011 fares since historical fares are not currently available;
this does not affect our results since (a) we are using the
same fares to compute both the “actual” and optimal trip
costs and (b) the relative benefit of one fare over another is
the same.

We then compute, for each individual, a sequence of op-
timal fares by building a tree, where each node is a ticket
and a chain of linked nodes denotes a sequence of purchase
decisions. Tickets have two corresponding costs: the ini-
tial cost (which is zero for PAYG and non-zero for travel
cards), and any additional charges that a traveller is subject
to while using that ticket (e.g., mixed-fare trips). The nodes
also have a geographic validity (i.e., zones) and expiry date:
single fares expire immediately, while travel cards expire a



Spending Cumulative Trip Avg User Avg
D1 Actual 13,797,168.10 1.47 52.20
D1 Optimal 11,395,244.90 1.22 43.11
Difference 2,401,923.20 0.25 9.09
D2 Actual 13,393,208.20 1.47 50.09
D2 Optimal 11,196,687.40 1.24 41.88
Difference 2,196,520.80 0.23 8.21

Table 3: Results (GBP) for D1 (May - July 2009)
and D2 (Oct 2009 - Jan 2010) with the actual and
optimal spending, quantified as cumulative, trip av-
erage, and user average spend.

number of days after purchase. For each trip that a traveller
makes, the leaves of the tree that are expired or not valid
are expanded by adding child nodes representing the tickets
that the traveller could select from. The cheapest fare is
computed with a depth-first search on the tree. Brute-force
exhaustive search on this tree would have a space complex-
ity of O(bd), where the branching factor b is the number of
available fares and the depth d is the number of trips taken
by the user. The resulting computational cost is prohibitive
for all users who have taken more than a handful of trips in
the 83-day periods covered by our datasets. We have thus
adopted a number of heuristic expansion and pruning rules
that reduce this search space [2], as we describe next.
Expansion Constraints. First, we implemented TfL’s

price“capping”system that prevents a traveller’s daily PAYG
cost from exceeding that of the relevant travel card. Second,
we consider the geographical requirements of all the user’s
trips. For example, if a traveller will only commute between
Zone 3 to Zone 4, then fares and travel cards that do not
include these areas (e.g., a Zone 1-2 travel card) are not
amongst the available options to expand the leaves. When
expanding the tree, we further reduced the number of can-
didate child nodes by taking transport modality into con-
sideration; for example, if we are expanding based on a rail
trip, then bus-only fares are not included.
Pruning Rules. We also defined a pruning function that,

as the tree grows, removes the subtrees with ticket sets that
are already more expensive than those in other subtrees.
More formally, let us define expire(X) as the expiry date of
the cheapest fare sequence starting from a generic node X,
and cost(X) as the total cost of the cheapest fare sequence
from node X. Given two sibling nodes X and Y, we prune
X’s branch if the following holds:

(

expire(X) ≤ expire(Y )
)

∧
(

cost(X) > cost(Y )
)

(1)

In other words, if a ticket has a shorter temporal validity
than another and is already more expensive, then it can be
pruned. Similarly, if a node with a smaller geographic range
is already more expensive than another with a larger range,
then this is due to the extra incurred cost of mixed-fare trips
and the node can be pruned. For example, a ticket for Zone
3 to 4 is “smaller” than Zone 3 to 5, and any trips between
Zone 3 and 5 using it will be charged at a mixed-fare rate.
The potential savings are shown in Table 3. Overall, we

find that this 5% sample of travellers are spending just under
GBP 2.5 million more than they need to. Overall, each user
in D1, on average, overspends by GBP 10. Two points to
note are: (a) using this sample of people to approximate the
entire population would mean multiplying these figures by

20 and (b) both datasets only cover an 83 day period. In
other words, we estimate that travellers cumulatively spend
up to approximately GBP 200 million per year more than
they need to, by simply buying the incorrect fares.

In the following section, we aim to answer this question
by uncovering the heuristics used by travellers to guide their
purchase choices; we will then propose algorithms that can
provide travellers with cost-saving ticket recommendations.

3.3 Purchase Decision Survey
There are a number of aspects relating to purchase deci-

sions that the datasets do not reveal; the datasets cannot tell
us why people opt for the fares that they buy and any biases
that they may be subject to. To explore this space, we de-
signed an online survey. The survey was divided into three
sections: (a) questions about travel habits: travel times, typ-
ical trip origins/destinations, and transport modes that are
most often used; (b) questions about purchasing habits: typ-
ical top-up amounts and travel cards bought and why they
are purchased; and lastly (c) open-ended questions about
their impressions of cost-saving and fare selection. The sur-
vey was disseminated online (via twitter and mailing lists)
and completed by 119 travellers (30% students).

The origin/destination pairs reported show that 92% of re-
spondents travel into Zone 1 during a typical week day, much
like the results we found in Figure 2(b). While self-reported
travel behaviour broadly correlates to that observed in the
two large datasets, we found significant differences in terms
of habits: only 7% of respondents claimed to top-up by less
than GBP 5, which does not match the proportion of these
transactions (49.5%) we found in the datasets. Furthermore,
a large proportion of respondents stated that they never buy
travel cards (46%), although this falls short of the propor-
tion of users in the larger datasets who also exhibited this
behaviour. Only 18% of respondents claimed that they typ-
ically buy a 7-day travel card, although we had previously
found this to be the most popular purchase choice.

These differences between self-reported and observed pur-
chasing data can be explained in two ways: they may be
due to the demographic biases in this sample of survey re-
spondents (even though their self-reported travel behaviour
did match that observed in our datasets), or they may be
a consequence of the divergence between travellers’s per-
ceived versus actual purchase behaviour (e.g., they may be
unaware of the high volume and cumulative effect of small
transactions that they carry out). We explored the misalign-
ment between travellers’ perceived and actual behaviour fur-
ther, by asking why they opt for the fares they buy. PAYG
was preferred when users expected their travel to be irreg-
ular (38.8% of the total votes), and when they believed
this was the cheapest option for them (with 32.2% of the
votes). Travel cards were preferred for convenience (39.4%),
and again because it was thought to be cost-saving (44.9%).
However, despite money-saving being a top priority over-
all, our previous analysis demonstrates massive amounts
of money is actually being wasted by the travellers. We
also asked respondents about when they top up their PAYG
credit versus when they purchase a travel-card, and the ma-
jority of them (77%) reported that they only top up when
they have insufficient credit to enter the system, demonstrat-
ing no element of planning whatsoever in this behaviour.

In the following section, we show how data mining tech-



Avg Trips/Day Geography Travel Time Travel Modality
Method Span MAE Precision Recall Precision Recall Precision Recall

Last Profile
1 0.72 0.9974 0.9976 0.8774 0.8313 0.9198 0.9161
7 0.41 0.9939 0.9940 0.8532 0.8509 0.9049 0.9050
30 0.30 0.9891 0.9899 0.8955 0.9172 0.9303 0.9298

Avg Profile
1 0.76 0.9996 0.9693 0.7267 0.7881 0.8239 0.8935
7 0.38 0.9978 0.9759 0.8607 0.8214 0.9123 0.8722
30 0.29 0.9916 0.9845 0.9156 0.9149 0.9444 0.9231

Moving Avg
1 0.69 0.9979 0.9963 0.5570 0.8285 0.7181 0.9443
7 0.37 0.9956 0.9908 0.8096 0.8689 0.8866 0.9131
30 0.29 0.9916 0.9844 0.9039 0.9192 0.9389 0.9314

Table 4: Averaged Results for D1 and D2 when predicting users’ travel profiles: How many trips per day
will they take? What zones will they travel between? Will they only travel off-peak? Lastly, will they only
take bus trips?

niques can be applied to aide travellers by providing fare
recommendations based on their trip history.

4. RECOMMENDING TICKETS
We formalise the ticket recommendation problem as fol-

lows. If we consider the factors that influence travel cost
(as outlined in Section 2), we can conclude that knowing a
traveller’s detailed future trips, as origin-destination pairs,
is not strictly necessary in order to recommend the best fare.
This is due to the zone structure of the stations: the fact
that a user went from Leicester Square to Heathrow Airport
is not needed to determine cost (all that is required is that a
trip was taken from Zone 1 to Zone 6). Instead, a number of
features shared by these trips are more relevant. Determin-
ing the appropriate fare can be based on an estimate of the
broad aspects of a traveller’s habits, such as frequency and
geographic areas of travel. More formally, given a sequence
of T(u) trips by user u, a traveller’s habits between time t

and (t+∆) can be summarised as:

Pu(t, t+∆) = {d, f, b, r, pt, ot, G} (2)

where d is the number of trips, f is the average trips per day,
b and r represent the proportion of trips that were taken with
buses and by rail respectively, pt and op are the proportion
of peak and off-peak trips, and G is an N×N matrix, with
N = the number of zones in London, and each Gi,j is the
frequency count of trips between these two areas. We assume
that, for other cities, a similar profile could be designed with
a basic understanding of the public transport fare structure.
Given this set up, the task of recommending the next suit-

able fare(s) can be decomposed into two prediction prob-
lems. The first is predicting a user’s future mobility patterns
Pu(t, t + ∆), given a sequence of Pu from prior to t. The
second problem is to fit the appropriate fare to a profile of
mobility requirements (i.e., predicting a ticket given a travel
profile). In the following sections, we look at and evaluate
each of these prediction problems individually.

4.1 Predicting Future Travel Habits
The first step in determining the best fares for a traveller

is forecasting their travel habits, in order to understand their
needs. As above, each user’s trips over a particular period
can be condensed into a profile of values representing their
geographical, temporal, and modality requirements. The
objective here is therefore to predict these values, given a

history of profiles. We applied a number of baseline algo-
rithms to this problem.

1. Last Profile: assumes that travel habits are constant;
a future profile between time t and (t+∆) is predicted
to be the same as the profile between (t−∆) and t.

2. Cumulative/Average Profile: leverages more his-
torical data than the last value; the modality, tempo-
ral and geographic features are simply sums of past
behaviour (e.g., we predict that a user will travel in
Zone 1-2 if that traveller has trips between these zones
in the past). If we define H as the set of profiles, each
of span ∆, that come before t:

H = [P (t0, t0 +∆), ..., P (t−∆, t)] (3)

Then the future profile trip frequency is defined the
average of the past ones:

Pu(t, t+∆) =
1

|H|

∑

i∈H

Hi (4)

3. Moving Average Profile. Lastly, we define a mov-
ing average profile, which gives additional weight to
more recent profiles. At each time interval (t, t + ∆),
the trip frequency f is defined as:

ft,t+∆ = α · ft−∆,t + (1− α) · ft−2∆,t−∆ (5)

All members of the traveller’s profile are similarly up-
dated, with the same scaling factor α.

Our experiments proceed as follows: given each user’s trips,
we can form a set of n profiles for a given time length
(e.g., ∆ =1-day profiles). We then use the historical pro-
files [0, 1, ..., n− 1] in order to predict the nth profile: ∆ re-
mains fixed. We repeat this process for all users and varying
time lengths. Our evaluation metrics focus on the aspects of
these predictions that will directly affect cost: we first esti-
mate the average trips per day for a given user, and measure
error with the mean absolute error (MAE); we then measure
precision and recall of classifying travel within each pair of
geographic zones, whether a user will solely take bus trips,
and whether a user will only travel during off-peak times.

All the results are shown in Table 4. We found that users’
travel habits are easily estimated with these baselines: for
example, precision and recall are consistently above 98%
across all methods, when predicting what zones each user



will travel in. A number of interesting trends also appear:
for example, estimating average trips per day becomes more
accurate over longer time spans. Classifying whether trav-
ellers will solely travel in off-peak times and whether they
will only take bus trips is estimated slightly less accurately,
although precision and recall values are still very high (91-
94%). To explain these highly accurate results, it is im-
portant to reinforce that we are predicting habits over very
coarse features (zones rather than stations): at this granu-
larity of geography, travellers are incredibly consistent.
Note that each of the algorithms we used views the compo-

nents of travellers’ profiles as independent from one another
(which is not the case); there are a number of models that
could leverage inter-dependencies between profile features in
order to improve predictions. However, since we found that
even these simple baselines produce highly accurate results,
we leave an examination of more complex models [4] as fu-
ture work.
Note that, in the above approach, each algorithm was

computing predictions over a pre-defined prediction window
∆. In practice, in order to recommend tickets to travellers,
multiple windows of different length will need to be consid-
ered simultaneously (t + ∆, t + ∆′, t + ∆′′, etc.), in order
to be able to recommend what the best next purchase is,
between tickets of different time validity (PAYG, week, and
month travel cards), which we leave as future work.

4.2 Predicting the Next Cheapest Fare
The next problem we need to solve is matching travel

habits to the cheapest fares; this setting heavily relies on an
accurate forecast of each user’s travel profile. In this work
we assume that these were predicted accurately. In future
work, we plan on investigating the effect of prediction er-
rors in users’ travel profile on the ticket recommendations
they receive. We regard this as a generic classification prob-
lem: given a vector of values representing trip habits, we
need to select from a set of categorical labels representing
tickets. Classification has been widely addressed in the lit-
erature and there are a range of algorithms that are readily
applicable to this scenario. Our evaluation proceeds as fol-
lows: given the trip data described above, we first compute
the travel profiles and optimal fares for each user (as per
Section 3.2). We thus produce a dataset of profile instances
of varying lengths ∆, each with the corresponding label. We
then randomly split this data into training (80% of the users)
and test (20% of the users) sets. We split by user so that we
could quantify how much these users would save with our
algorithms; we also measure the accuracy of classifying the
instances in the test set as the number of correctly classified
instances over the total number of instances. The techniques
we evaluated on our data include:

1. Baseline. This classifier simply returns the most fre-
quent class in our training set (PAYG). Inherently, we
expect this classifier to do relatively well; by (correctly)
predicting the fares for those users who should travel
on PAYG, it corrects the cases of users who bought
travel cards without needing to do so.

2. Näıve Bayes. This classifier, based on Bayes’ theo-
rem, assumes that each feature of the users’ profiles is
independent from the others. Given a profile with n

features Pu = {F1, F2, ..., Fn}, the probability that the

Accuracy (%) Savings (GBP)
Method D1 D2 D1 D2
Baseline 74.99 76.91 326,447.95 306,145.85
Näıve Bayes 77.46 80.71 393,585.81 369,232.24
k-NN (5) 96.74 97.09 465,822.17 426,375.85
C4.5 98.01 98.29 473,918.38 434,082.81
Oracle 100.0 100.0 479,583.91 438,923.30

Table 5: Ten-fold cross validated classification accu-
racy for each dataset and average cumulative savings
if travellers used each algorithm’s recommendation.

best fare is ticket C is estimated as:

p(C|Pu) = p(C)
n
∏

i=1

p(Fi|C) (6)

The best ticket is then selected as the class with the
highest probability. For all features that do not re-
late to geographic requirements (i.e., all except feature
G above), the posterior probability that feature Fi in
class C has value v is estimated with a Gaussian distri-
bution that is parameterised with the mean, µC , and
variance, σ2

C , of the feature Fi in class C:

P (Fi = v|C) =
1

√

2πσ2
C

e
−

(v−µC )2

2σ2
C (7)

The geographic features, instead, are transposed into
binary variables, and the posterior is estimated as the
proportion of instances in class C where Fi is non zero.

3. k-Nearest Neighbours. This technique operates by
finding, for each test profile, the k most similar pro-
files; the predicted class is the most frequent class
that appears in the neighbour set. We first defined
similarity as the absolute difference between two pro-
files (thus, smaller values indicate higher similarity).
We also introduced two small modifications: we gave
higher weight to the average trips per day and days
of travel (by using the squared difference) than to the
proportion of bus trips (by ignoring the similarity be-
tween pairs of profiles where one only rides the bus and
the other does not).

4. Decision Trees. The C4.5 algorithm [5] is a statisti-
cal classifier that generates a decision tree which can be
used to classify test instances. It does so by recursively
partitioning the data on a single attribute, according
to the measured information gain of each split, where
gain is defined relative to the entropy E(S) of each
group S:

E(S) = −
n
∑

i=1

p(xi) logb p(xi) , (8)

where n is the number of classes (i.e., tickets) and p(xi)
is the proportion of S belonging to class i. In this work,
we used the open-source implementation of C4.5 from
the WEKA project [6].

We measure each classifier’s performance with the propor-
tion of correctly classified test instances (which we denote as
accuracy); a summary of the ten-fold cross validated results



is shown in Table 5. The accuracy of the baseline is due to
the large proportion of users in our datasets who have very
few trips (thus making PAYG their cheapest fare). However,
all the algorithms were able to outperform the baseline by
varying amounts: the C4.5 decision tree produced the most
accurate results, at over 96% and 98% for D1 and D2 re-
spectively. We also quantified the savings that our trav-
ellers could have cumulatively achieved, had they followed
each algorithm’s recommendation, along with the maximum
possible savings computed with the tree-based method de-
scribed in Section 3.2 (denoted “oracle”). The total amount
of possible savings, for both datasets, were over GBP 400
thousand. In both cases, the savings obtained by the C4.5
decision tree were less than 5 thousand pounds away from
the optimal: over 99% of the potential savings were obtained
by this algorithm’s classifications. Interestingly, the baseline
also provides modest savings: it seems from this that a large
waste is generated by people buying travel cards that they
then do not use.

5. RELATED WORK
By combining data from public transport and fare pur-

chases, this study has a wide range of related research. At
the broadest level, we categorise these into two different
groups: understanding mobility, which has been studied us-
ing a variety of different data sources, and investigating and
mining decision making contexts, by building recommender
systems.

5.1 Mining and Modeling Mobility
Insight into human mobility is recognised as the key to

understanding a variety complex phenomena, such as the
spread of disease and traffic pattern forecasting [7], as well
as giving an understanding into urban design and flow. It
has been studied using mobile phone data [7, 8], travel data
[3], and bank note dispersal patterns [9]. Fare collection data
provides an alternative data source into people’s commuting
habits and mobility; the analysis in Section 3 highlighted a
range of behaviours, ranging from aggregate, city-wide flows
to individual modality choices.
These works examine mobility in isolation. Richer sce-

narios have also been researched: for example, Graham and
Glaister [10] developed models to test the influence of traf-
fic pricing on congestion and travel times. More generally,
many transport-related projects are dedicated toward un-
derstanding mobility and building advanced traveller infor-
mation systems (for example, [11, 12]). These systems all
aim to help people travel, but rarely factor in the cost of
doing so; we found that, in the context of public transport,
there have been no efforts dedicated to helping commuters
buy cost-saving fares.

5.2 Decision Making
Decision making is also at the forefront of research and

popular literature [13]. In the field of data mining, there
are two questions that arise: the first is when to make a
decision in a volatile environment. For example, Etzioni et
al. [14] mine airfare data in order to predict when the best
time to buy a plane ticket is; in this case, airfare prices
vary over time according to hidden variables (such as seat
availability). Much like algorithmic trading, the basis of the
decision is to predict the minimum of a time-varying price.
The methods developed by these researchers do not apply

to the problem of public transport fare selection, as prices
will not vary at such heightened frequencies. Instead, our
context relates to decision making in the face of an abun-
dance of options. In general, the solution for the information
overload problem [15] in web settings (e-commerce, movie
rentals and music) is building online recommender systems
[16]. As the web becomes evermore mobile, the breadth of
contexts addressed by recommender systems is also growing
to include urban navigation [17]. While personalisation and
recommender systems have been widely adopted in online
environments, there still exists a broad variety of contexts
where users need to make complex decisions without the
aide of these technologies. One area where recommender
systems have little to no presence is the domain of the indi-
vidual, off-line financial transactions and purchase decisions
that people need to regularly make. This paper considers
one such example: the problem of selecting which public
transport ticket is best suited to a particular traveller.

6. CONCLUSION
In this paper, we investigated the financial benefits that

can be offered to travellers after mining their mobility data.
At face value, our proposals may be seen as detrimental to
business, since they lower the gross income of the transport
authority. However, by offering a service that enables trav-
ellers to understand and improve their spending habits, the
adoption and use of public transport may actually rise, as
travellers know that they are being given the best fare.

The details of this study are location-specific: we focus on
the fare and public transport network structure in London,
and also on the data that is available from the AFC sys-
tem adopted by TfL. The applicability of these techniques
to other cities will rely on the data collection and fare struc-
tures in place; for example, the fare scheme in Seoul, Korea,
also factors in distance [18]. However, an overriding conclu-
sion is that the availability and mining of AFC data presents
many opportunities for personalised, dynamic services that
cater for individual travellers [19].

We first evaluated baseline algorithms for estimating trav-
eller mobility patterns, and found them to be highly con-
sistent. We then evaluated algorithms that, given a travel
profile, can predict what the best fare will be. Both predic-
tion problems remain considerate of each traveller’s privacy:
they do not require the full trip history of each user to be
stored, but only a less fine grained summary profile.

The evaluation metrics that we used focused on accuracy,
precision, recall, and potential savings. In practice, rank-
based metrics may also be helpful, since a deployed system
would not want to recommend a single ticket for purchase,
but rather present the most appropriate set of fares to each
traveller, allowing them to make their own decisions. How-
ever, a useful side-effect of the classification algorithms that
we evaluated is that they also pave the way for explanations
to be given to travellers (e.g., we recommend the week pass
since you tend to travel x times per week but only y times per
month). In fact, a key role of this system would be to sim-
plify the ticket purchase decision process, by decreasing the
number of fare options offered to each traveller, so that they
are aligned with their travel behaviour; as a consequence
of the informed choices being made, users may then adapt
their behaviour based on the fares they have purchased.

We conclude by noting how similar techniques could be
applied to a myriad of scenarios: wherever traces of hu-



man behaviour can be collected, data mining can be used
to complement the daily decisions that people make. Ex-
amples include recommending telephone contracts (or call
plans) based on mobile phone usage or recommending in-
vestment and saving plans based on bank account data.
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