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AbstrAct

Recommender systems generate personalized content for each of its users, by relying on an assumption 
reflected in the interaction between people: those who have had similar opinions in the past will continue 
sharing the same tastes in the future. Collaborative filtering, the dominant algorithm underlying recom-
mender systems, uses a model of its users, contained within profiles, in order to guide what interactions 
should be allowed, and how these interactions translate first into predicted ratings, and then into recom-
mendations. In this chapter, the authors introduce the various approaches that have been adopted when 
designing collaborative filtering algorithms, and how they differ from one another in the way they make 
use of the available user information. They then explore how these systems are evaluated, and highlight 
a number of problems that prevent recommendations from being suitably computed, before looking at 
the how current trends in recommender system research are projecting towards future developments. 

IntroductIon

Recommender systems are experiencing a grow-
ing presence on the Internet; they have evolved 
from being interesting additions of e-commerce 
web sites into essential components and, in some 
cases, the core of online businesses. The success 

of these systems stems from the underlying al-
gorithm, based on collaborative filtering, which 
re-enacts the way humans exchange recommenda-
tions in a way that can be scaled to communities 
of millions of online users. Users of these systems 
will thus see personalized, unique, and inter-
est-based recommendations presented to them 



�  

Computing Recommendations with Collaborative Filtering

computed according to the opinions of the other 
users in the system, and can actively contribute 
to other’s recommendations by inputting their 
own ratings.

This chapter introduces recommender sys-
tems and the algorithms, based on collaborative 
filtering, that fuel the success these systems are 
experiencing in current online applications. There 
are a number of methods that have been applied 
when designing filtering algorithms, but they 
all share a common assumption: the users, and 
the interactions between them, can be modeled 
in such a way that it is possible to filter content 
based on the responses they input. 

In particular, the objectives of this chapter can 
be decomposed into a number of questions:

• Why do we need recommender systems; 
what problem do they address?

• How are recommendations generated? This 
question explores collaborative filtering: 
what it is, how it works, and how different 
fields of research have led collaborative fil-
tering to be categorized into memory- and 
model-based approaches.

• How are recommender systems evaluated? In 
particular, what problems do these systems 
face, and how does research address these 
problems? Lastly,

• What are the current future directions of 
recommender system research?

We explore these questions by considering 
the participants of a recommender system as 
members of a community of users. This method 
highlights the importance of user models within 
recommender systems, both as a means of rea-
soning about the underlying operations on the 
data and building a system that end-users will 
respond positively to. However, we begin by 
looking at the motivating problems and history 
of these systems.

bAckground

As the Internet grows, forever broadening both the 
range and diversity of information that it makes 
accessible to its users, a new problem arises: the 
amount of information available, and the rate at 
which new information is produced, becomes 
too great for individuals to sift through it all and 
find relevant resources. Resources may include, 
but are not limited to, movies, music, products of 
e-commerce catalogues, blogs, news articles and 
documents. Users, unable to dedicate the time to 
browse all that is available, are thus confronted 
with the problem of information overload, and the 
sheer abundance of information diminishes users’ 
ability to identify what would be most useful and 
valuable to each of their needs.

Recommender systems, based on the principles 
of collaborative filtering, have been developed in 
response to information overload, by acting as 
a decision-aiding tool. However, recommender 
systems break away from merely helping users 
search for content towards providing interest-
based, personalized content without requiring 
any search query. Recommender systems diverge 
from traditional information retrieval by building 
long term models of each user’s preferences, and 
selectively combining different users’ opinions in 
order to provide each user with unique recom-
mendations.

Research into the field of collaborative filtering 
began in the early 1990s, with the first filtering 
system, Tapestry, being developed at the Xerox 
Palo Alto Research Center (Goldberg et al, 1992). 
This system, recognizing that simply using mail-
ing lists would not ensure that all users interested 
in an e-mail’s content would receive the message, 
allowed users to annotate e-mail messages so 
that others could filter them by building complex 
queries. This was the first system to capture the 
power of combining human judgments, expressed 
in message annotations, with automated filter-
ing, in order to benefit all of the system’s users. 
Similar concepts were later applied to Usenet 
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news by the GroupLens research project, which 
extended previous work by applying the same 
principles to the Internet discussion forum, which 
had become too big for any single user to manage 
(Konstan et al, 1997). In doing so, they created the 
first virtual community of recommenders, which 
we will explore further below. The GroupLens 
project continues contributing to recommender 
system research, and has also implemented the 
MovieLens movie recommender system, provid-
ing the research community with valuable data 
of user ratings.

The initial success that recommender systems 
experienced reflected the surge of web sites dedi-
cated to e-commerce; Schafer et al (2001) review 
and describe a number of mainstream examples 
that implement these systems. The cited sites, 
like Amazon.com and CDNow.com, implement 
recommenders to build customer loyalty, increase 
profits, and boost item-cross selling. In fact, it 
has been reported that 35% of Amazon.com’s 
product sales come from recommendations, rec-
ommendations generate 38% more click-through 
on Google news, and over two thirds of movies 
rented by online movie-renting site Netflix were 
recommended (Celma & Lamere, 2007). The 
same technologies can also be used to address a 
wide range of different needs. These include ad 
targeting and one-to-one marketing. However, 
Schafer et al also describe the relationship between 
recommender systems and users rating buyers 
and sellers on sites like eBay.com; in fact, they 
touch upon the overlap between recommendation 
and reputation systems. More recently, web sites 
like Last.fm have reaped the benefits of collecting 
user-music listening habits, in order to provide 
customized radio stations and music recommenda-
tions to their subscribers. The influence, presence, 
and importance of the recommender system is not 
only well established, but also grows over time, 
as we address the evermore important problem 
of filtering never ending content.

Before introducing the underlying algorithms 
of recommender systems, it is useful to define the 

terms that will be used throughout this chapter. 

• User: the end-user of the system, or the 
person we wish to provide with recom-
mendations. This is often referred to as the 
active user; however, in this chapter we 
differentiate between the current users we 
are generating recommendations for and the 
users contributing to the recommendation by 
referring to the latter users as recommend-
ers. The entire set of users is referred to as 
the community.

• Rating: The problem of generating recom-
mendations is often described as a problem 
of predicting how much a user will like, or 
the exact rating that the user will give to, a 
particular item. Ratings can be explicit or 
implicit, as detailed in the next section.

• Profile: Users in a recommender system can 
be modeled according to a wide variety of 
information, but the most important infor-
mation is the set of ratings that users have 
provided the system with, which corresponds 
to each user’s profile. These are considered 
in more depth below.

rAtIngs And user ProfIles

The focal point of recommender systems is the 
set of user profiles; by containing a collection of 
judgments, or ratings, of the available content, 
this set provides an invaluable source of informa-
tion that can be used to provide each user with 
recommendations.

Human judgments, however, can come from 
two separate sources. These are related to the 
broader category of relevance feedback from 
the information retrieval community (Ruthven 
& Lalmas, 2003); a comprehensive review of 
information retrieval techniques can be found 
Faloutsos & Oar, 1995. On the one hand, the judg-
ments could be in the form of explicit ratings. For 
example, a user who liked a movie could give it 
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a 4-star rating, or can give a faulty product a 1-
star rating; the judgment is a numeric value that 
is input directly by the user. On the other hand, 
judgments can be extracted from the implicit 
behavior of the user. These include time spent 
reading a web page, number of times a particular 
song or artist was listened to, or the items viewed 
when browsing an online catalogue. Measuring 
these qualities is an attempt to capture taste by 
measuring how users interact with the content, 
and thus will often depend on the specific context 
that the recommender system is operating upon. 
For example, movie-recommender systems often 
prefer to let users explicitly rate movies, since 
it might often be the case that users disliked a 
particular movie. Music recommender systems, 
on the other hand, tend to construct user profiles 
based on listening habits, by collecting meta-
data of the songs each user has listened to; these 
systems favor implicit ratings by assuming that 
users will only listen to music they like. Implicit 
ratings can be converted to a numeric value with 
an appropriate transpose function, and therefore 
the algorithms we describe below are equally 
applicable to both types of data. They also both 
share a common characteristic: the set of avail-
able judgments for each user, compared to the 
total number of items that can be rated, will be 
very small. This stems from the very nature of 
the information overload problem, and without 
it, recommender systems would no longer be 
needed. The lack of information is often referred 
to the problem of data sparsity, and has a strong 
effect on the predictive power of any algorithms 
that base their recommendations on this data. A 
small example of a set of user profiles, often called 

a user-rating matrix, for a movie recommender 
system, is shown in Table 1.

The problem of data sparsity reveals itself 
in this example; not all users have rated all the 
content. It also paves the way for the algorithms 
we describe in the following sections, which aim 
at predicting ratings for each user. It is important 
to note, however, that the techniques described 
here can be equally applied to both user profiles, 
which contain a vector of content (or item) ratings, 
and item profiles, which contain a vector of user 
ratings (Sarwar et al, 2001; Linden et al, 2003). 
For example, a user-centered approach would 
refer to “Alice’s” profile as containing “Citizen 
Kane” and “Hannibal,” with 4 and 3 star ratings, 
respectively. An item-centered approach, instead, 
would consider “The Matrix’s” profile as “Bob” 
and “David,” who assigned 5 and 2 stars to the 
item. Both methods produce comparable results, 
and differ only in their perspective of the system; 
one considers the rows of the user-rating matrix, 
and the other uses the columns. In this chapter, we 
focus on the user-centered approach. Furthermore, 
a rating give by user u for item i will be referred 
to as rui, and the set of ratings that correspond to 
user u’s profile is Ru. 

Although above we have differentiated be-
tween the explicit and implicit collection of user 
preferences, the two methods need not be separate. 
In fact, Basu et al (2001) discuss how technical 
papers can be recommended to reviewers by 
combining information from multiple sources; not 
limiting the sources of information can improve 
recommendation by increasing the knowledge we 
have of each user’s profile. However, Herlocker et 
al (2004) identified that user profiles are created 

The Matrix Citizen Kane Hannibal Snow White …

Alice 4 3 …

Bob 5 4 1 …

David 2 4 4 …

… … … … … …

Table 1.
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for different reasons, including self-expression, 
and helping or influencing others’ decisions. 
Similarly, the tasks that are requested of recom-
mender systems can vary, from finding good items, 
finding all items, recommending a sequence of 
items, or as a browsing aide. However, the main 
goal of recommender systems remains the same: 
we aim at filtering content in order to provide 
relevant and useful suggestions to each user of 
the system. The particular task, or context, will 
influence the approaches that can be used, which 
we discuss below. Filters are often classified into 
one of two categories; content-based filters, or 
collaborative-filters. 

content-bAsed fIlters

Content-based recommender system algorithms 
disregard the collaborative component, which 
we will explore further below, and base their 
recommendation generative power on match-
ing descriptions of the content in the system 
to individual user profiles (Pazzani & Billsus, 
2007). The key to these recommendations lies 
in decomposing the content in the system into 
a number of attributes, which may be based on 
enumerable, well-defined descriptive variables, 
such as those found in an explicit taxonomy. The 
attributes can also be extracted features, such as 
word frequency in news articles, or user-input 
tags. The user profile, on the other hand, contains 
a model of the items that are of interest to that 
user. These may include a history of purchases, or 
explicitly defined areas of interest; for example, a 
user may input the sort of qualities desired when 
looking for a product (e.g.  “price is less than,” 
“album artist is,” and so on).

Recommendations can then be generated by 
applying one of a wide variety of methods to the 
user model of preferences. These include rule 
induction methods and decision trees; a compre-
hensive review can be found in Pazzani & Billsus 
(2007). However, an interesting consequence of 

building recommender systems this way is that 
they can quickly adapt to and change recommenda-
tions based on the user’s immediate feedback. This 
leads to the idea of conversational recommenders, 
which allows users to revise the preferences they 
input by critiquing the obtained results (Viappiani 
et al, 2007). In doing so, user models themselves 
are highly dynamic and specific to the current 
recommendation that is sought, and allow users 
to understand the effect of their preferences on 
the recommendations they are given.

Content-based systems, however, are not ap-
propriately or readily applied to the entire range 
of scenarios where users may benefit from rec-
ommendations. On the one hand, these systems 
require content that favors analysis, and can be 
described in terms of a number of attributes, 
which may not always be the case. Eliciting 
preferences is a valid data collection technique 
in a limited number of contexts and more suitable 
for environments where content attributes play a 
significant role in each user’s ultimate decision, 
such as selecting an apartment, a restaurant, or 
a laptop computer. In other cases, it may be too 
much work to impose on the user, and the collab-
orative filtering alternative is a more appropriate 
solution. 

collAborAtIVe fIlterIng

Unlike content-based systems, collaborative 
filtering algorithms take a “black-box” approach 
to content that is being filtered (Herlocker et al, 
1999). In other words, they completely disregard 
any descriptions or attributes of the data, or what 
the data actually is, in favor of human judgments, 
and focuses on generating recommendations based 
on the opinions that have been expressed by a 
community of users. In doing so, they augment 
the power of filtering algorithms towards pure 
quality-based filtering, and have been widely 
applied to a variety of Internet web sites, such 
as the ones explored above.
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The problem of generating recommendations, 
and the use of the data that is available to tackle 
this task, has been approached from a very wide 
range of perspectives. Each perspective applies 
different heuristics and methodologies in order 
to create recommendations. In the following sec-
tions, we review the two broadest categories of 
filters: memory- and model-based collaborative 
filtering followed by a brief look at other methods 
and hybrid approaches.

Memory-based collaborative 
filtering

Memory-based collaborative filtering is often 
referred to as the dominant method of generating 
recommendations; its clear structure, paired with 
the successful results it produces, makes it an easy 
choice for system developers. It is called memory-
based filtering since it relies on the assumption 
that users who have been historically like-minded 
in the past will continue sharing their interests 
in the future (Herlocker et al, 1999). Therefore, 
recommendations can be produced for a user by 
generating predicted ratings of unrated content, 
based on an aggregate of the ratings given by 
the most similar (or “nearest”) users from within 
the community. This is why the process is often 
referred to as kNN, or k nearest-neighbor filter-
ing, and can be decomposed into three stages; 
neighborhood formation, opinion aggregation, 
and recommendation.

Neighborhood Formation

This first step aims at finding a unique subset of 
the community for each user, by identifying oth-
ers with similar interests to act as recommenders.  
To do so, every pair of user profiles is compared, 
in order to measure the degree of similarity wa,b 
shared between all user pairs a and b. In general, 
similarity values range from 1 (perfect similarity) 
to -1 (perfect dissimilarity), although different 
measures may only return values on a limited 

amount of this range. If a pair of users has no 
profile overlap, there is no means of comparing 
how similar they are, and thus the similarity is 
set to 0. 

Similarity can be measured in a number of 
ways, but the main goal of this measure remains 
that of modeling the potential relationship between 
users with a numeric value. The simplest means 
of measuring the strength of this relationship is 
to count the proportion of co-rated items shared 
by the pair of users (Charikar 2002):
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This similarity measure disregards the values 
of the ratings input by each user, and instead opts 
to only consider what each user has rated; it is the 
size of the intersection of the two users’ profiles 
over the size of the union. The underlying assump-
tion is that two users who continuously rate the 
same items share a common characteristic: their 
choice to rate those items.

However, the most cited method of measuring 
similarity is the Pearson Correlation Coefficient, 
which aims at measuring the degree of linearity 
that exists on the intersection of the pair of us-
ers’ profiles (Breese et al, 1998; Herlocker et al, 
1999): this is a measure of linearity between two 
user’s profiles.

            (2)
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Each rating above is normalized by subtracting 
the user’s mean rating; this value is the average 
of all the ratings in the user profile. The Pearson 
Correlation similarity measure has been subject 
to a number of improvements. For example, if the 
intersection between the pair of user’s profiles 
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is very small, the resulting similarity measure 
is highly unreliable, as it may indicate a very 
strong relationship between the two users (who, 
on the other hand, have only co-rated very few 
items). To address this, Herlocker et al (1999) 
introduced significance weighting: if the number 
of co-rated items n is less than a threshold value 
x, the similarity measure is multiplied by n/x. 
This modification reflects the fact that similarity 
measures become more reliable as the number of 
co-rated items increases, and has positive effects 
on the predictive power of the filtering algorithm. 
The same researchers also cite the constrained 
Pearson correlation coefficient, which replaces 
the user means in the above equation with the 
rating scale midpoint.

There are a number of other ways of measur-
ing similarity that have been applied in the past. 
These include the Spearman Rank correlation, 
the Vector Similarity (or cosine angle between 
the two user profiles), Euclidean and Manhattan 
distance, and other methods aimed at capturing 
the proportion of agreement between users, such 
as the methods explored by Agresti and Winner 
(1997). Each method differs in the operations it 
applies in order to derive similarity, and may have 
a strong effect on the power the algorithm has to 
generate predicted ratings.

Similarity measures are also often coupled 
with other heuristics that aim at improving the 
reliability and power of the derived measures. 
For example, Yu et al (2001) introduced variance 
weighting; when comparing user profiles, items 
that have been rated by the community with greater 
variance receive a higher weight. The aim here is 
to capture the content that, by being a measurably 
high point of disagreement amongst community 
members, is a better descriptor of taste. Measur-
ing similarity, however, remains an open issue; 
to date, there is little that can be done other than 
comparing prediction accuracy in order to dem-
onstrate that one similarity measure outperforms 
another on a particular dataset.

Opinion Aggregation

Once comparisons between the user and the rest 
of the community of recommenders (regardless of 
the method applied) are complete, we have a set 
of recommender weights, and predicted ratings 
of unrated content can be computed.  As above, 
there are a number of means of computing these 
predictions. Here we present two (Herlocker et 
al, 1999; Bell & Koren, 2007):

r r w
p r

w
b,i b a,b

a,i a
a,b        (3)

r w
p

w
b,i a,b

a,i
a,b         (4)

Both equations share a common characteristic: 
a predicted rating pa,i of item i for user a is com-
puted as a weighted average of neighbor ratings 
rb,i. The weights wa,b are the similarity measures 
we found in the first step, and therefore neighbors 
who are more similar will have greater influence 
on the prediction. The main difference between 
the two methods is that Equation 3 subtracts each 
recommender’s mean from the relative rating. 
The aim of this method is to minimize the dif-
ferences between different recommender’s rating 
style, by considering how much ratings deviate 
from each recommender’s mean rather than the 
rating itself.

The natural question to ask at this step is: which 
recommender ratings are chosen to contribute 
to the predicted rating? A variety of choices is 
once again available, and has a direct impact on 
the performance that can be achieved. In some 
cases, only the top-k most similar neighbors are 
allowed to contribute ratings, thus guaranteeing 
that only the closest ratings create the prediction. 
However, it is often the case that none of the top-k 
neighbors have rated the item in question, and thus 
the prediction coverage, or the number of items 



�  

Computing Recommendations with Collaborative Filtering

that can be successfully predicted, is negatively 
impacted. A straightforward alternative, therefore, 
is to consider the top-k recommenders who can 
give rating information about the item in ques-
tion. On the one hand, this method guarantees 
that all predictions will be made; on the other 
hand, predictions may now be made according to 
ratings provided by only modestly-similar users, 
and may thus be less accurate.

A last alternative is to only select users above 
a pre-determined similarity threshold. Given that 
different similarity measures will produce dif-
ferent similarity values, generating predictions 
this way may also prevent predictions from being 
covered. All methods, however, share a common 
decision: what should the threshold value, or value 
of k, be? This question remains unanswered and 
dependent on the available dataset; however, 
research in the area tends to publish results for a 
wide range of values.

Recommendation

Once predicted ratings have been generated for 
the items, and sorted according to predicted value, 
the top-n items can be proposed to the end user as 
recommendations. This step completes the process 
followed by recommender systems, which can 
now elicit feedback from the user. User profiles 
will grow, and the recommender system can begin 
cycling through the above process: re-computing 
user similarity measures, predicting ratings, and 
offering recommendations.

It is important to note that the user interface of 
the system plays a vital role in this last step. The 
interface does not only determine the ability the 
system has to present generated recommendations 
to the end user in a clear, transparent way, but will 
also have an effect on the response that the user 
gives to received recommendations. Wu & Huber-
man (2007) conducted a study investigating the 
temporal evolution of opinions of products posted 
on the web. They concluded that if the aggregate 
rating of an item is visible to users and the cost 

of expressing opinions for users is low (e.g. one 
click of a mouse), users will tend to express either 
neutral ratings or reinforce the view set by previous 
ratings. On the other hand, if the cost is high (such 
as requiring users to write a full review), users 
tended to offer opinions when they felt they could 
offset the current trend. Changing the visibility 
of information and the cost imposed on users to 
express their opinions, both determined by the 
interface provided to end users, will thus change 
the rating trend of the content, and the data that 
feeds into the filtering algorithm.

Up to this point, we have considered the pro-
cess of generating recommendations strictly from 
the memory-based, nearest-neighbor approach. 
However, tackling the problem of information 
overload has been approached from a wide range of 
research fields and backgrounds. In the following 
section we review some of the contributions made 
by the field of machine learning, often referred to 
as model-based collaborative filtering.

Model-based collaborative filtering

Model-based approaches to collaborative filtering, 
stemming from the field of machine learning, aim 
to apply the broad set of solutions developed by 
that field of research to the problem of informa-
tion filtering. A complete introduction to machine 
learning is beyond the scope of this chapter, 
although there are many sources available for 
background reading, such as Alpaydin (2004).

The applicability of machine-learning tech-
niques is founded in our original description of 
the aim of filtering: we would like to predict how 
much users will like, or rate, the content they have 
not rated already, and rank these items in order to 
provide the top-n as recommendations. In other 
words, collaborative filtering falls between the 
broader categories of classification, or deciding 
what rating group unrated items belong to, and 
regression, the process of modeling the relation-
ship a variable (such as a user rating) has with 
other variables (the set of user profiles).
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An example that highlights the applicability of 
these techniques to recommender systems is the 
use of a p-rank algorithm (Crammer & Singer, 
2001). The items that a user has rated, in this case, 
are considered as a set of training instances. Each 
instance can be described by a vector of features x; 
in our case, the features correspond to the ratings 
given to the item by the community of users. The 
goal of the algorithm is to learn a ranking rule, or 
mapping from an instance to the correct rank (or, 
equivalently, a mapping from a user-item to the 
correct rating). To do so, the algorithm needs to 
learn how to weight the individual features, and 
will attempt to do so by iterating over the training 
instances. It begins with a vector of weights w (set 
to an initial value), and a set of b thresholds, one 
for each rank possible. Therefore, for example, 
if a 5-star rating scale is implemented, b = 5. At 
each step, it will make a prediction based on the 
current set of weights, by multiplying the feature 
vector x with the weight vector w. The predicted 
rank is then computed as the index r of the small-
est threshold such that rbxw <× . When the user 
inputs the actual rating, the algorithm can check 
to see if it made a mistake, and, if it did, it will 
update its weights w and thresholds b. Over time, 
this algorithm aims to minimize the loss between 
predicted and actual ranks, by learning how to 
make accurate predictions using a set of instance 
features. This algorithm approaches the problem 
of filtering as an instance of a linear classifica-
tion problem, and thus its inception is based on 
perceptron classifiers.

The p-rank algorithm is just one of the solutions 
proposed by the machine learning community. 
Other quoted examples include the use of singular 
value decomposition, neural net classifiers, Bayes-
ian networks, support vector machines, induction 
rule learning, and latent semantic analysis (Breese 
et al, 1998; Yu et al, 2004). Each differs in the 
method applied to learn how to generate recom-
mendations, but they all share a similar high-level 
solution: they are based on inferring rules and 
patterns from the available rating data.

Model-based approaches are attractive solu-
tions since, once trained, they compute predicted 
ratings extremely efficiently. However, they have 
had limited success, since (the simpler) memory-
based approaches have been shown to be just as 
accurate (Grcar et al, 2005). The two categories 
of solutions also differ in their interpretation of 
the users operating within the system. Memory-
based methods model all user interactions based 
on measurable similarity-values, and thus leads 
to the notion of a community of recommenders. 
Model-based approaches, instead, train a separate 
model for each user in the system, and are thus 
characterized by a stronger subjective view of the 
recommender system’s end users.

Hybrid Methods

As we have seen, filtering algorithms have been 
designed from a number of different backgrounds, 
leading to the categorization of these algorithms 
into memory- and model-based groups. Each 
method provides a number of advantages, and 
faces a number of weaknesses. Hybrid methods, 
combining a series of techniques from both 
groups, aim at achieving the best of both worlds: 
the advantages of each method stripped of the 
weaknesses that it faces when operating alone.

For example, Rashid et al (2006) proposed a 
filtering algorithm suitable for extremely large 
datasets that combines a clustering algorithm 
with the nearest-neighbor prediction method. 
The aim was to cluster similar users together 
first, in order to overcome the incredibly costly 
operation of measuring the similarity between all 
of the community user pairs in the system, and 
then apply a nearest-neighbor technique to make 
predictions in order to reap the high accuracy it 
tends to achieve. Much like the work presented 
by Li & Kim (2003), clustering methods can be 
implemented to replace the “neighborhood forma-
tion” step of memory-based approach described 
above. The Yoda system, designed by Shahabi 
et al (2001), is an example system that performs 
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similar functions: clustering is implemented to 
address the scalability issues that arise as the 
community of users and available items grows. A 
full overview of the performance of memory- and 
model-based approaches is available in Breese 
et al (1998).

Other means of modeling a community of us-
ers in order to successfully filter information for 
each member have been proposed; for example, 
Cayzer & Aickelin (2002) drew parallels between 
information filtering and the operation of the hu-
man immune system, in order to construct a novel 
means of filtering. Another example moves into 
the domain of recommending a coherent ordering 
of songs by applying case-based reasoning (Bac-
cigalupo & Plaza, 2007). Case-based reasoning 
looks at a set of previous experiences in order to 
derive information that can be applied to a new 
problem. Solving the new problem follows simi-
lar steps to that described for general machine 
learning procedures, and entails retrieving the 
correct sub-set of experiences, applying them 
to the current problem, and then revising the 
solution based on any received feedback. This 
technique was applied successfully to a domain 
where simply predicting good songs was not 
enough, but predicting a good sequence of songs 
was desired.

Up to now, we have had a high-level overview of 
the multiple approaches applied to recommender 
systems. However, as we will discuss in the next 
section, none of the above methods is perfect; 
moreover, they all share common weaknesses 
and problems that hinder the generation of useful 
recommendations.

recoMMender sYsteMs: 
ProbleMs And eVAluAtIons

The issues that recommender systems face can be 
grouped into three generic categories: problems 
arising from within the algorithm, user issues, and 

system vulnerabilities. A good part of research 
into collaborative filtering has thus centered on 
solving these problems, or minimizing the effect 
that they have on the system and the end user ex-
perience. In doing so, the primary metrics used to 
evaluate these systems emerge, and further ques-
tions regarding the suitability of these evaluation 
methods arise. In this section we will take a look 
at how experiments on filtering algorithms are 
conducted, what error measures can be extracted, 
and the problems that these measures highlight in 
the operation of recommender systems.

Algorithm

The first set of issues stem from the filtering al-
gorithms applied to generate recommendations. 
As we have seen above, the common goal of the 
many algorithms is to predict how much users 
will like different items on offer to them. 

Missing Data

Predictions are based on the rating information 
that has been input by the community of users, 
and the breadth and number of ratings available 
is generally much smaller than the full possible 
set of ratings. In other words, as we have seen, 
the user-rating matrix is very sparse. This char-
acteristic of the data prevents user profiles from 
being compared to one another, as there will 
often not be an overlap between the two profiles, 
and therefore the incomparable pair of users will 
never be able to contribute to each other’s predic-
tions. In other words, the amount of information 
that can be propagated around the community 
by means of similarity becomes limited. Solu-
tions to this problem have been proposed; these 
include dimensionality reduction techniques, 
such as singular value decomposition (Paterek, 
2007), and missing data prediction algorithms 
(Ma et al, 2007).
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Accuracy Error Metrics

Regardless of whether a method is applied to 
tackle data sparsity, the main task remains that 
of predicting items users will like. To evaluate 
how well an algorithm is accomplishing this task, 
experiments are performed on one of the available 
user-rating datasets. The dataset is first partitioned 
into two subsets; the first acts as a training set, 
and will be used to set any values required by the 
algorithm. These may include, in the case of near-
est-neighbor filtering, user-similarity values and 
determining each user’s top-k recommenders. In 
the case of model-based approaches, the training 
set would determine what instances are avail-
able for the algorithm to learn from. The second 
subset is the test set, and remains hidden to the 
algorithm. An evaluation will feed the training set 
into the algorithm, and then ask the algorithm to 
make predictions on all the items in the test set. 
Predictions can thus be compared to the actual, 
hidden values held in the test set, and measures 
of accuracy and coverage can be extracted.

Accuracy metrics aim to evaluate how well the 
system is making predictions. Available measures 
of statistical accuracy include the mean absolute 
error (MAE) and the root mean squared error 
(RMSE):
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Both of the above measures focus on the dif-
ference between a rating of item i by user a, ra,i, 
and the prediction for the same user and item, pa,i. 
In general, both metrics measure the same thing 
and will thus behave similarly; if an experiment 
outputs a reduced MAE, the RMSE will also 
reduce. The difference lies in the degree to which 
different mistakes are penalized.

The traditional focus on accuracy in recom-
mender research continues to be disputed. On the 
one hand, the above accuracy metrics focus on 
the predictions that have been output by the algo-
rithm, regardless of whether the prediction was at 
all possible or not. Massa & Avesani (2007) have 
shown that, in terms of prediction accuracy, these 
systems seem to perform well when pre-defined 
values are returned. For example, if each predic-
tion simply returned the current user mean (thus 
not allowing content to be ranked and converted 
into recommendations), accuracy metrics would 
still not reflect such poor behavior. McLaughlin 
& Herlocker (2004) further this argument, by 
arguing that striving for low mean errors biases 
recommender systems towards good predictors 
rather than recommenders. In other words, a error 
in a prediction affects the mean error the same 
way, regardless of whether the prediction enabled 
the entry to qualify as a top-n recommendation or 
not. Furthermore, as shown in the work by Yu et al 
(2001), many items will have a low rating variance. 
A natural consequence of this is that an evaluation 
method that only makes predictions on items in the 
test set, items that the user has rated, will tend to 
show good performance. Real systems, that have 
to provide recommendations based on making 
predictions on all unrated items may have much 
worse performance. Mean errors will therefore 
not tend to reflect the end-user experience. Con-
cerns over accuracy-centric research continues; 
McNee et al (2006) even argued that striving for 
accuracy is detrimental to recommender system 
research, and propose that evaluations should 
revert to user-centric methods.

Accuracy metrics persist, however, due to 
the need for empirical evaluations of filtering 
algorithms which can compare the relative perfor-
mance of different techniques without including 
the subjective views of a limited (and, more often 
than not, inaccessible) group of test subjects. Some 
fixes have been proposed; for example, Lathia 
et al (2008) limit the measurement of error to 
predictions that were possible. In this case, it is 
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imperative to report both accuracy and coverage 
metrics (as described below) to provide a clear 
picture of an algorithm’s performance; however, 
this fix does not address the issue of whether a 
prediction excludes an item from a top-n list, and 
the effect this will have on the end user.

Coverage metrics aim to explore the breadth 
of predictions that were possible using the given 
method. Looking back on Equations 3 and 4, it 
is possible to conceive of a scenario where no 
neighbor rating information can be found, and 
thus no prediction can be made. In these cases a 
default value is returned instead; often this value is 
the user’s rating mean, and these predictions will 
be labeled uncovered. Coverage metrics compare 
the proportion of the dataset that is uncovered to 
the size of the test set, in order to measure the 
extent that predictions were made possible using 
the current algorithm and parameters.

Other error measures have been applied when 
analyzing the accuracy of a filtering algorithm, 
including receiver-operating characteristic (ROC) 
sensitivity (Herlocker et al, 1999). This measure 
draws from work done in Information Retrieval, 
and aims at measuring how effectively predicted 
ratings helped a user select high-quality items. 
Recommendations are therefore reduced to a 
binary decision: either the user “consumed” the 
content (i.e. watched the movie, listened to the 
song, read the article) and rated it, or did not. By 
comparing the number of false-positives, or items 
that should have been recommended that were 
not, and false-negatives, or not recommending 
an item that should have been, this metric aims at 
measuring the extent to which the recommender 
system is helping users making good decisions. 
However, this method relies on a prediction score 
threshold that determines whether the item was 
recommended or not, which is often not translate 
to the way that users are presented with recom-
mendations.

user-related Problems

Although poor accuracy and coverage will have 
a great influence on the user response to the rec-
ommender system, the second set of problems is 
tied much closer to the immediate user experience 
with the system.

The first of these issues is referred to as the 
cold-start problem; this problem can affect users, 
items, and new recommender systems equally. 
On the one hand, users with no historical ratings, 
which include any new-entrants into the system, 
will not be able to receive any personalized rec-
ommendations. No historical profile implies that 
no neighbors can be computed, recommender 
weights will all be zero, and no predictions will 
be possible. On the other hand, items that have 
not been rated by any member of the community 
can not be recommended to any users. This high-
lights the dependence of filtering algorithms on 
the altruism of the community of users making 
use of the recommender system; if users do not 
rate items, or contribute to their profile then the 
cycling process of generating recommendations 
can not be completed.

A number of solutions have been proposed to 
confront the cold-start problem.  In the case of 
recommender systems based on explicit ratings, 
the system could require users to rate a number 
of items as part of the sign-up procedure (Rashid 
et al, 2002). This method imposes an additional 
burden on users, but guarantees that there will be 
a limited amount of profile information to gener-
ate the first recommendations. Other researchers 
proposed to counter the cold-start problem by 
making inferences from non-profile information 
which may be included in the sign-up process, 
such as simple demographic values like age, 
gender, and location (Nguyen et al, 2007). In this 
case, a rule-based induction process is applied in 
order to identify, for each user, a sub-set of the 
community that will most likely include good 
recommenders. However, not all recommender 
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systems require users to input demographic data; 
this solution is dependent on the details of the 
sign-up procedure. Other solutions to the user 
cold-start problem diverge away from similar-
ity, and lean towards the broader notion of trust 
(Massa & Avesani, 2007). Trust is defined as a 
user-input measure of how relevant and interesting 
other recommender’s ratings (or reviews) seem to 
be; it thus has a strong overlap with similarity, but 
is received from the end-users rather than being 
computed, and can successfully be propagated 
over an entire community. However, as described 
above, the cold-start problem does not only affect 
users: it can also plague a new system, or prevent 
new items from being recommended. In this case, 
Park et al (2006) proposed the use of filter-bots, or 
automated surrogate users who rate items purely 
based on their content or attributes. Although 
these bots do not equal the ability a community 
of users has to find high quality content, they 
ensure that new items will not be excluded from 
the recommendation process.

The second set of issues regards the effect that 
recommendations, when they can be generated, 
have on the user. On the one hand, there is an 
issue of transparency; in other words, do users 
understand how their recommendations were 
generated? This issue will be of primary concern 
to those developing the user interface with the 
system, who will aim to present recommenda-
tions in a clear, understandable way (Tintarev & 
Masthoff, 2007). On the other hand, users look 
to recommender systems for new, interesting, 
and surprising (or serendipitous) information. 
If a user rates an item (for example, rating an 
album by The Beatles), loading the user’s recom-
mendations with extremely similar items (i.e. 
all of the other albums by The Beatles) is often 
not helpful at all; the user has not been pointed 
towards new information, and is only inundated 
with recommendations towards content that is 
probably known already. The question therefore 
becomes: to what extent do filtering algorithms 

generate serendipitous recommendations? This 
is a very difficult characteristic to measure, and 
remains an open research question.

The last user-issue that we consider here is also 
tied with the algorithm chosen to generate recom-
mendations. Whether the algorithms are learning 
over training instances or computing relation-
ships between the user pairs of the community, 
these algorithms suffer from very high latency. 
Computing user similarity or feeding data into a 
learning algorithm is a very expensive operation, 
often requiring exponential space or time, and 
can not be continuously updated.  Recommender 
systems therefore tend to perform iterative, regular 
updates. Users will not be continuously offered 
new recommendations, and will have to wait for 
a system update to see their recommendations 
change. Constant time algorithms have been 
proposed (Goldberg et al, 2000), but have yet to 
be widely applied.

system Vulnerabilities

The last set of problems faced by recommender 
systems are system vulnerabilities; these are 
the set of problems that are caused by malicious 
users attempting to game or modify the system. 
Why would users want to exploit a recommender 
system? Attempting to modify or control the 
recommendations that are output by a system 
aims at harvesting the success of recommender 
systems for the attacker’s selfish purposes.  This 
may be done in order to artificially promote a piece 
of content, to demote content (perhaps since it 
competes with the attacker’s content), or to target 
a specific target audience of users. These attacks 
are aided by the near-anonymity of users in the 
recommender system community. In some cases, 
signing up to an e-service that uses recommender 
system technology only requires an email address. 
Creating a number of fake accounts is thus not 
beyond the realms of possibility; furthermore, if 
each of these fake accounts has an equal contribu-
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tion to predicted ratings that honest user profiles 
do, it becomes possible to direct the output of 
recommender systems at will.

Malicious users can therefore build a number 
of fake profiles in order to influence the under-
lying collaborative filtering algorithm. These 
attacks have often been referred to as shilling, 
profile-injection, or Sybil attacks (Mobasher et 
al, 2007). All of these share the common method 
of inserting multiple entities into the system in 
order to change the resulting predicted ratings 
for the target item, user, or set of users. In other 
words, they take advantage of the way that users 
are modeled by the algorithm in order to achieve 
a desired outcome. The fake profiles that are 
being inserted can be engineered to be highly 
correlated to the target user (or item), with the 
small exception of the rating for the item under 
attack. This way, nearest-neighbor methods, as 
described in previous sections, will select the 
fake profile when generating a predicted rating, 
and thus will return a prediction that will deviate 
a lot from the experience the user will have. For 
example, a movie may be predicted to have a five 
star rating, while the user would in fact input only 
two stars; the injected profiles have managed to 
change the outcome of the recommendations and 
favor the disliked movie. 

Profile-injection attacks are often classified 
according to the amount of information attack-
ers require in order to successfully construct 
fake profiles. Lam & Riedl (2004) explored the 
effectiveness of introducing profiles based on 
random-valued ratings against profiles based on 
ratings centered on the global mean of the dataset. 
Attacks are more effective if they are based on 
full knowledge of the underlying dataset distri-
bution; however, many filtering datasets share 
similar distributions, and thus most malicious 
users will be able to perform more than a simple, 
naïve attack.

Research in the field of recommender system 
vulnerabilities can be broken into two categories. 
On the one hand, system administrators require 

a means of identifying attacks, by being able to 
recognize when an attack is occurring and which 
users are malicious profiles. To do so, Chirita et 
al (2005) propose to identify attackers by mea-
suring characteristics of the injected profiles. A 
malicious profile can be identified if it shares 
high similarity with a large subset of users, has 
a strong effect on the predictive accuracy of the 
system, and includes ratings that have a strong 
deviation from the mean agreement amongst the 
community members. Although this technique can 
be used to successfully eliminate injected profiles, 
the difficulty of the problem is also highlighted: 
what if an honest user’s profile is identified as a 
malicious one?

On the other hand, the vulnerabilities them-
selves are addressed; how can these attacks be 
prevented? How can the cost or effect be mini-
mized? General solutions often involve minimiz-
ing the number of recommenders that users can 
interact with, mimicking the social behavior 
of not trusting unknown people. Model-based 
approaches have also been shown to be more 
resilient to manipulation. Resnick & Sami (2007) 
propose a manipulation-resistant recommender 
system that protects its user community by ap-
plying a reputation score to recommenders. A 
more comprehensive review of the vulnerabilities 
of collaborative recommender systems and their 
robustness to attack can be found in Mobasher 
et al (2007).

future trends

Recommender system research is by no means 
waning. In fact, it has recently been encouraged 
by the announcement of the Netflix competition, 
which has contributed to research by releasing 
one of the largest user-rating datasets available 
to date1. The competition aims at reducing the 
error in the Netflix movie recommender. It has 
therefore given way to a surge in research aiming 
at mere accuracy, and, as we discussed above, 
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there is much more to recommender systems than 
solving the prediction problem.

Research to date has widely ignored the tem-
poral characteristic of recommender systems. 
The only exception lies in the definition of the 
cold-start problem, which recognizes that new 
entrants into the system will not receive suitable 
recommendations until their profile has grown. 
Exploring the temporal characteristic of these 
systems would shed light on how they grow, 
evolve over time and the influence that varying 
amounts of available rating information has on the 
accuracy of a system. In other words, a temporal 
view of the system would shed light on the effect 
of filtering algorithms applied to a community of 
users. One method of approaching this problem 
is to consider a recommender system as a graph. 
Nodes in this graph correspond to users, and a 
link between a pair of users is weighted with 
the similarity shared between the two (Lathia et 
al, 2008). This paves the way for the techniques 
described by graph-theory research to be applied 
to recommender systems.

As we have seen, both the user and community 
model is essential to collaborative filtering algo-
rithms. These models are based on measurable 
similarity in order to allow opinion information 
to be propagated around the community. Un-
derstanding how similarity evolves over time, 
therefore, would also highlight how interactions 
between recommenders can be designed, and what 
properties of the system emerge when different 
filtering algorithms are applied.

Majority of the focus of recommender system 
research has been context-specific. The datasets 
available reinforce this focus; the publicly avail-
able datasets do not cross between different types 
of content. However, performing cross-context 
recommendations remains an open question. 
Given a user profile of movie preferences, can 
the user be recommended music successfully? 
If a user’s music has been profiled, can the user 
be recommended live music events or concerts 
of interest? This issue is of particular interest 

to e-commerce portals, which tend to provide 
a wide range of items and are not limited to a 
specific type. Many services also only profile a 
user in a given context, and thus users tend to 
build multiple profiles over a wide range of loca-
tions. Finding means of porting profiles from one 
place to another, and successfully using them for 
cross-contextual recommendations has yet to be 
explored.

Recommender systems also hold the poten-
tial to be applied in non-centralized domains: 
including peer to peer file sharing networks and 
mobile telephones. There has been a wide range 
of work done addressing peer to peer network 
recommendations (Ziegler, 2005), but little work 
addressing how collaborative filtering would oper-
ate in a mobile environment. Mobile collaborative 
filtering would allow users to benefit as they have 
when using online services. It would allow them 
to, for example, share content when on the move, 
and receiving recommendations relating to their 
immediate surroundings. Porting collaborative 
filtering to distributed environments brings to 
light a new set of obstacles. How will recom-
mendations be computed? Where will profiles be 
stored, and who will they be shared with? Data 
privacy and security gain renewed importance 
(Lathia et al, 2007).

conclusIon

In this chapter, we have introduced the underly-
ing algorithms of recommender systems, based 
on collaborative filtering. Recommender systems 
were conceived in response to information over-
load, a natural consequence of the ever-expanding 
breadth of online content; it has become impos-
sible to sift through or browse online content 
without recommendations. Collaborative filtering 
automates the process of generating recommen-
dations by building on the common assumption 
of like-mindedness. In other words, people who 
have displayed a degree of similarity in the past 
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will continue sharing the same tastes in the fu-
ture. The model of users held by these systems 
therefore focuses on the set of preferences that 
each individual has expressed, and interactions 
between users can be determined according to 
values derived by operating on the information 
available in user’s profiles.

The approaches themselves, however, originate 
from a wide variety of backgrounds, and thus 
have been separated into content-based meth-
ods, which infer recommendations from item 
attributes, model-based solutions, which draw on 
the success of machine learning techniques, and 
the dominant memory-based, nearest neighbor 
technique. Nearest neighbor algorithms follow a 
three-stage process: finding a set of recommend-
ers for each user, based on a pre-defined measure 
of similarity, computing predicted ratings based 
on the input of these recommenders, and serving 
recommendations to the user, hoping that they 
will be accurate and useful suggestions. The 
choice of what method to implement relies on a 
fine balance between accuracy, performance, and 
is also dependent on specific context that recom-
mendations need to be made for. Each method 
has its own strengths and weaknesses, and hybrid 
methods attempt to reap the best of both worlds 
by combining a variety of methods.

The most general problems faced by recom-
mender systems remain the same, regardless of 
the approach used to build the filtering algorithm. 
These problems were grouped into three catego-
ries: problems originating from the algorithm, 
including accuracy, coverage, and whether they 
actually help the user’s decision making process, 
problems centered on the users, including the cold-
start problem and displaying serendipitous, trans-
parent recommendations, and lastly, system-wide 
vulnerabilities and their susceptibility to attack. 
However, the exciting on-going research promises 
to not only solve, but clarify the effects of these 
algorithms on end-users and boost their potential 
to help users in a wide range of contexts.
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