
 �

Chapter II
Computing Recommendations

with Collaborative Filtering

Neal Lathia
University College London, UK

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Recommender systems generate personalized content for each of its users, by relying on an assumption
reflected in the interaction between people: those who have had similar opinions in the past will continue
sharing the same tastes in the future. Collaborative filtering, the dominant algorithm underlying recom-
mender systems, uses a model of its users, contained within profiles, in order to guide what interactions
should be allowed, and how these interactions translate first into predicted ratings, and then into recom-
mendations. In this chapter, the authors introduce the various approaches that have been adopted when
designing collaborative filtering algorithms, and how they differ from one another in the way they make
use of the available user information. They then explore how these systems are evaluated, and highlight
a number of problems that prevent recommendations from being suitably computed, before looking at
the how current trends in recommender system research are projecting towards future developments.

IntroductIon

Recommender systems are experiencing a grow-
ing presence on the Internet; they have evolved
from being interesting additions of e-commerce
web sites into essential components and, in some
cases, the core of online businesses. The success

of these systems stems from the underlying al-
gorithm, based on collaborative filtering, which
re-enacts the way humans exchange recommenda-
tions in a way that can be scaled to communities
of millions of online users. Users of these systems
will thus see personalized, unique, and inter-
est-based recommendations presented to them

�

Computing Recommendations with Collaborative Filtering

computed according to the opinions of the other
users in the system, and can actively contribute
to other’s recommendations by inputting their
own ratings.

This chapter introduces recommender sys-
tems and the algorithms, based on collaborative
filtering, that fuel the success these systems are
experiencing in current online applications. There
are a number of methods that have been applied
when designing filtering algorithms, but they
all share a common assumption: the users, and
the interactions between them, can be modeled
in such a way that it is possible to filter content
based on the responses they input.

In particular, the objectives of this chapter can
be decomposed into a number of questions:

• Why do we need recommender systems;
what problem do they address?

• How are recommendations generated? This
question explores collaborative filtering:
what it is, how it works, and how different
fields of research have led collaborative fil-
tering to be categorized into memory- and
model-based approaches.

• How are recommender systems evaluated? In
particular, what problems do these systems
face, and how does research address these
problems? Lastly,

• What are the current future directions of
recommender system research?

We explore these questions by considering
the participants of a recommender system as
members of a community of users. This method
highlights the importance of user models within
recommender systems, both as a means of rea-
soning about the underlying operations on the
data and building a system that end-users will
respond positively to. However, we begin by
looking at the motivating problems and history
of these systems.

bAckground

As the Internet grows, forever broadening both the
range and diversity of information that it makes
accessible to its users, a new problem arises: the
amount of information available, and the rate at
which new information is produced, becomes
too great for individuals to sift through it all and
find relevant resources. Resources may include,
but are not limited to, movies, music, products of
e-commerce catalogues, blogs, news articles and
documents. Users, unable to dedicate the time to
browse all that is available, are thus confronted
with the problem of information overload, and the
sheer abundance of information diminishes users’
ability to identify what would be most useful and
valuable to each of their needs.

Recommender systems, based on the principles
of collaborative filtering, have been developed in
response to information overload, by acting as
a decision-aiding tool. However, recommender
systems break away from merely helping users
search for content towards providing interest-
based, personalized content without requiring
any search query. Recommender systems diverge
from traditional information retrieval by building
long term models of each user’s preferences, and
selectively combining different users’ opinions in
order to provide each user with unique recom-
mendations.

Research into the field of collaborative filtering
began in the early 1990s, with the first filtering
system, Tapestry, being developed at the Xerox
Palo Alto Research Center (Goldberg et al, 1992).
This system, recognizing that simply using mail-
ing lists would not ensure that all users interested
in an e-mail’s content would receive the message,
allowed users to annotate e-mail messages so
that others could filter them by building complex
queries. This was the first system to capture the
power of combining human judgments, expressed
in message annotations, with automated filter-
ing, in order to benefit all of the system’s users.
Similar concepts were later applied to Usenet

 �

Computing Recommendations with Collaborative Filtering

news by the GroupLens research project, which
extended previous work by applying the same
principles to the Internet discussion forum, which
had become too big for any single user to manage
(Konstan et al, 1997). In doing so, they created the
first virtual community of recommenders, which
we will explore further below. The GroupLens
project continues contributing to recommender
system research, and has also implemented the
MovieLens movie recommender system, provid-
ing the research community with valuable data
of user ratings.

The initial success that recommender systems
experienced reflected the surge of web sites dedi-
cated to e-commerce; Schafer et al (2001) review
and describe a number of mainstream examples
that implement these systems. The cited sites,
like Amazon.com and CDNow.com, implement
recommenders to build customer loyalty, increase
profits, and boost item-cross selling. In fact, it
has been reported that 35% of Amazon.com’s
product sales come from recommendations, rec-
ommendations generate 38% more click-through
on Google news, and over two thirds of movies
rented by online movie-renting site Netflix were
recommended (Celma & Lamere, 2007). The
same technologies can also be used to address a
wide range of different needs. These include ad
targeting and one-to-one marketing. However,
Schafer et al also describe the relationship between
recommender systems and users rating buyers
and sellers on sites like eBay.com; in fact, they
touch upon the overlap between recommendation
and reputation systems. More recently, web sites
like Last.fm have reaped the benefits of collecting
user-music listening habits, in order to provide
customized radio stations and music recommenda-
tions to their subscribers. The influence, presence,
and importance of the recommender system is not
only well established, but also grows over time,
as we address the evermore important problem
of filtering never ending content.

Before introducing the underlying algorithms
of recommender systems, it is useful to define the

terms that will be used throughout this chapter.

• User: the end-user of the system, or the
person we wish to provide with recom-
mendations. This is often referred to as the
active user; however, in this chapter we
differentiate between the current users we
are generating recommendations for and the
users contributing to the recommendation by
referring to the latter users as recommend-
ers. The entire set of users is referred to as
the community.

• Rating: The problem of generating recom-
mendations is often described as a problem
of predicting how much a user will like, or
the exact rating that the user will give to, a
particular item. Ratings can be explicit or
implicit, as detailed in the next section.

• Profile: Users in a recommender system can
be modeled according to a wide variety of
information, but the most important infor-
mation is the set of ratings that users have
provided the system with, which corresponds
to each user’s profile. These are considered
in more depth below.

rAtIngs And user ProfIles

The focal point of recommender systems is the
set of user profiles; by containing a collection of
judgments, or ratings, of the available content,
this set provides an invaluable source of informa-
tion that can be used to provide each user with
recommendations.

Human judgments, however, can come from
two separate sources. These are related to the
broader category of relevance feedback from
the information retrieval community (Ruthven
& Lalmas, 2003); a comprehensive review of
information retrieval techniques can be found
Faloutsos & Oar, 1995. On the one hand, the judg-
ments could be in the form of explicit ratings. For
example, a user who liked a movie could give it

�

Computing Recommendations with Collaborative Filtering

a 4-star rating, or can give a faulty product a 1-
star rating; the judgment is a numeric value that
is input directly by the user. On the other hand,
judgments can be extracted from the implicit
behavior of the user. These include time spent
reading a web page, number of times a particular
song or artist was listened to, or the items viewed
when browsing an online catalogue. Measuring
these qualities is an attempt to capture taste by
measuring how users interact with the content,
and thus will often depend on the specific context
that the recommender system is operating upon.
For example, movie-recommender systems often
prefer to let users explicitly rate movies, since
it might often be the case that users disliked a
particular movie. Music recommender systems,
on the other hand, tend to construct user profiles
based on listening habits, by collecting meta-
data of the songs each user has listened to; these
systems favor implicit ratings by assuming that
users will only listen to music they like. Implicit
ratings can be converted to a numeric value with
an appropriate transpose function, and therefore
the algorithms we describe below are equally
applicable to both types of data. They also both
share a common characteristic: the set of avail-
able judgments for each user, compared to the
total number of items that can be rated, will be
very small. This stems from the very nature of
the information overload problem, and without
it, recommender systems would no longer be
needed. The lack of information is often referred
to the problem of data sparsity, and has a strong
effect on the predictive power of any algorithms
that base their recommendations on this data. A
small example of a set of user profiles, often called

a user-rating matrix, for a movie recommender
system, is shown in Table 1.

The problem of data sparsity reveals itself
in this example; not all users have rated all the
content. It also paves the way for the algorithms
we describe in the following sections, which aim
at predicting ratings for each user. It is important
to note, however, that the techniques described
here can be equally applied to both user profiles,
which contain a vector of content (or item) ratings,
and item profiles, which contain a vector of user
ratings (Sarwar et al, 2001; Linden et al, 2003).
For example, a user-centered approach would
refer to “Alice’s” profile as containing “Citizen
Kane” and “Hannibal,” with 4 and 3 star ratings,
respectively. An item-centered approach, instead,
would consider “The Matrix’s” profile as “Bob”
and “David,” who assigned 5 and 2 stars to the
item. Both methods produce comparable results,
and differ only in their perspective of the system;
one considers the rows of the user-rating matrix,
and the other uses the columns. In this chapter, we
focus on the user-centered approach. Furthermore,
a rating give by user u for item i will be referred
to as rui, and the set of ratings that correspond to
user u’s profile is Ru.

Although above we have differentiated be-
tween the explicit and implicit collection of user
preferences, the two methods need not be separate.
In fact, Basu et al (2001) discuss how technical
papers can be recommended to reviewers by
combining information from multiple sources; not
limiting the sources of information can improve
recommendation by increasing the knowledge we
have of each user’s profile. However, Herlocker et
al (2004) identified that user profiles are created

The Matrix Citizen Kane Hannibal Snow White …

Alice 4 3 …

Bob 5 4 1 …

David 2 4 4 …

… … … … … …

Table 1.

 �

Computing Recommendations with Collaborative Filtering

for different reasons, including self-expression,
and helping or influencing others’ decisions.
Similarly, the tasks that are requested of recom-
mender systems can vary, from finding good items,
finding all items, recommending a sequence of
items, or as a browsing aide. However, the main
goal of recommender systems remains the same:
we aim at filtering content in order to provide
relevant and useful suggestions to each user of
the system. The particular task, or context, will
influence the approaches that can be used, which
we discuss below. Filters are often classified into
one of two categories; content-based filters, or
collaborative-filters.

content-bAsed fIlters

Content-based recommender system algorithms
disregard the collaborative component, which
we will explore further below, and base their
recommendation generative power on match-
ing descriptions of the content in the system
to individual user profiles (Pazzani & Billsus,
2007). The key to these recommendations lies
in decomposing the content in the system into
a number of attributes, which may be based on
enumerable, well-defined descriptive variables,
such as those found in an explicit taxonomy. The
attributes can also be extracted features, such as
word frequency in news articles, or user-input
tags. The user profile, on the other hand, contains
a model of the items that are of interest to that
user. These may include a history of purchases, or
explicitly defined areas of interest; for example, a
user may input the sort of qualities desired when
looking for a product (e.g. “price is less than,”
“album artist is,” and so on).

Recommendations can then be generated by
applying one of a wide variety of methods to the
user model of preferences. These include rule
induction methods and decision trees; a compre-
hensive review can be found in Pazzani & Billsus
(2007). However, an interesting consequence of

building recommender systems this way is that
they can quickly adapt to and change recommenda-
tions based on the user’s immediate feedback. This
leads to the idea of conversational recommenders,
which allows users to revise the preferences they
input by critiquing the obtained results (Viappiani
et al, 2007). In doing so, user models themselves
are highly dynamic and specific to the current
recommendation that is sought, and allow users
to understand the effect of their preferences on
the recommendations they are given.

Content-based systems, however, are not ap-
propriately or readily applied to the entire range
of scenarios where users may benefit from rec-
ommendations. On the one hand, these systems
require content that favors analysis, and can be
described in terms of a number of attributes,
which may not always be the case. Eliciting
preferences is a valid data collection technique
in a limited number of contexts and more suitable
for environments where content attributes play a
significant role in each user’s ultimate decision,
such as selecting an apartment, a restaurant, or
a laptop computer. In other cases, it may be too
much work to impose on the user, and the collab-
orative filtering alternative is a more appropriate
solution.

collAborAtIVe fIlterIng

Unlike content-based systems, collaborative
filtering algorithms take a “black-box” approach
to content that is being filtered (Herlocker et al,
1999). In other words, they completely disregard
any descriptions or attributes of the data, or what
the data actually is, in favor of human judgments,
and focuses on generating recommendations based
on the opinions that have been expressed by a
community of users. In doing so, they augment
the power of filtering algorithms towards pure
quality-based filtering, and have been widely
applied to a variety of Internet web sites, such
as the ones explored above.

�

Computing Recommendations with Collaborative Filtering

The problem of generating recommendations,
and the use of the data that is available to tackle
this task, has been approached from a very wide
range of perspectives. Each perspective applies
different heuristics and methodologies in order
to create recommendations. In the following sec-
tions, we review the two broadest categories of
filters: memory- and model-based collaborative
filtering followed by a brief look at other methods
and hybrid approaches.

Memory-based collaborative
filtering

Memory-based collaborative filtering is often
referred to as the dominant method of generating
recommendations; its clear structure, paired with
the successful results it produces, makes it an easy
choice for system developers. It is called memory-
based filtering since it relies on the assumption
that users who have been historically like-minded
in the past will continue sharing their interests
in the future (Herlocker et al, 1999). Therefore,
recommendations can be produced for a user by
generating predicted ratings of unrated content,
based on an aggregate of the ratings given by
the most similar (or “nearest”) users from within
the community. This is why the process is often
referred to as kNN, or k nearest-neighbor filter-
ing, and can be decomposed into three stages;
neighborhood formation, opinion aggregation,
and recommendation.

Neighborhood Formation

This first step aims at finding a unique subset of
the community for each user, by identifying oth-
ers with similar interests to act as recommenders.
To do so, every pair of user profiles is compared,
in order to measure the degree of similarity wa,b
shared between all user pairs a and b. In general,
similarity values range from 1 (perfect similarity)
to -1 (perfect dissimilarity), although different
measures may only return values on a limited

amount of this range. If a pair of users has no
profile overlap, there is no means of comparing
how similar they are, and thus the similarity is
set to 0.

Similarity can be measured in a number of
ways, but the main goal of this measure remains
that of modeling the potential relationship between
users with a numeric value. The simplest means
of measuring the strength of this relationship is
to count the proportion of co-rated items shared
by the pair of users (Charikar 2002):

ba

ba
ba RR

RR
w

=,

 (1)

This similarity measure disregards the values
of the ratings input by each user, and instead opts
to only consider what each user has rated; it is the
size of the intersection of the two users’ profiles
over the size of the union. The underlying assump-
tion is that two users who continuously rate the
same items share a common characteristic: their
choice to rate those items.

However, the most cited method of measuring
similarity is the Pearson Correlation Coefficient,
which aims at measuring the degree of linearity
that exists on the intersection of the pair of us-
ers’ profiles (Breese et al, 1998; Herlocker et al,
1999): this is a measure of linearity between two
user’s profiles.

 (2)

r r r r

w

r r r r

N
a,i a b,i b

i 1a,b N N2 2
a,i a b,i b

i 1 i 1

Each rating above is normalized by subtracting
the user’s mean rating; this value is the average
of all the ratings in the user profile. The Pearson
Correlation similarity measure has been subject
to a number of improvements. For example, if the
intersection between the pair of user’s profiles

 �

Computing Recommendations with Collaborative Filtering

is very small, the resulting similarity measure
is highly unreliable, as it may indicate a very
strong relationship between the two users (who,
on the other hand, have only co-rated very few
items). To address this, Herlocker et al (1999)
introduced significance weighting: if the number
of co-rated items n is less than a threshold value
x, the similarity measure is multiplied by n/x.
This modification reflects the fact that similarity
measures become more reliable as the number of
co-rated items increases, and has positive effects
on the predictive power of the filtering algorithm.
The same researchers also cite the constrained
Pearson correlation coefficient, which replaces
the user means in the above equation with the
rating scale midpoint.

There are a number of other ways of measur-
ing similarity that have been applied in the past.
These include the Spearman Rank correlation,
the Vector Similarity (or cosine angle between
the two user profiles), Euclidean and Manhattan
distance, and other methods aimed at capturing
the proportion of agreement between users, such
as the methods explored by Agresti and Winner
(1997). Each method differs in the operations it
applies in order to derive similarity, and may have
a strong effect on the power the algorithm has to
generate predicted ratings.

Similarity measures are also often coupled
with other heuristics that aim at improving the
reliability and power of the derived measures.
For example, Yu et al (2001) introduced variance
weighting; when comparing user profiles, items
that have been rated by the community with greater
variance receive a higher weight. The aim here is
to capture the content that, by being a measurably
high point of disagreement amongst community
members, is a better descriptor of taste. Measur-
ing similarity, however, remains an open issue;
to date, there is little that can be done other than
comparing prediction accuracy in order to dem-
onstrate that one similarity measure outperforms
another on a particular dataset.

Opinion Aggregation

Once comparisons between the user and the rest
of the community of recommenders (regardless of
the method applied) are complete, we have a set
of recommender weights, and predicted ratings
of unrated content can be computed. As above,
there are a number of means of computing these
predictions. Here we present two (Herlocker et
al, 1999; Bell & Koren, 2007):

r r w
p r

w
b,i b a,b

a,i a
a,b (3)

r w
p

w
b,i a,b

a,i
a,b (4)

Both equations share a common characteristic:
a predicted rating pa,i of item i for user a is com-
puted as a weighted average of neighbor ratings
rb,i. The weights wa,b are the similarity measures
we found in the first step, and therefore neighbors
who are more similar will have greater influence
on the prediction. The main difference between
the two methods is that Equation 3 subtracts each
recommender’s mean from the relative rating.
The aim of this method is to minimize the dif-
ferences between different recommender’s rating
style, by considering how much ratings deviate
from each recommender’s mean rather than the
rating itself.

The natural question to ask at this step is: which
recommender ratings are chosen to contribute
to the predicted rating? A variety of choices is
once again available, and has a direct impact on
the performance that can be achieved. In some
cases, only the top-k most similar neighbors are
allowed to contribute ratings, thus guaranteeing
that only the closest ratings create the prediction.
However, it is often the case that none of the top-k
neighbors have rated the item in question, and thus
the prediction coverage, or the number of items

�

Computing Recommendations with Collaborative Filtering

that can be successfully predicted, is negatively
impacted. A straightforward alternative, therefore,
is to consider the top-k recommenders who can
give rating information about the item in ques-
tion. On the one hand, this method guarantees
that all predictions will be made; on the other
hand, predictions may now be made according to
ratings provided by only modestly-similar users,
and may thus be less accurate.

A last alternative is to only select users above
a pre-determined similarity threshold. Given that
different similarity measures will produce dif-
ferent similarity values, generating predictions
this way may also prevent predictions from being
covered. All methods, however, share a common
decision: what should the threshold value, or value
of k, be? This question remains unanswered and
dependent on the available dataset; however,
research in the area tends to publish results for a
wide range of values.

Recommendation

Once predicted ratings have been generated for
the items, and sorted according to predicted value,
the top-n items can be proposed to the end user as
recommendations. This step completes the process
followed by recommender systems, which can
now elicit feedback from the user. User profiles
will grow, and the recommender system can begin
cycling through the above process: re-computing
user similarity measures, predicting ratings, and
offering recommendations.

It is important to note that the user interface of
the system plays a vital role in this last step. The
interface does not only determine the ability the
system has to present generated recommendations
to the end user in a clear, transparent way, but will
also have an effect on the response that the user
gives to received recommendations. Wu & Huber-
man (2007) conducted a study investigating the
temporal evolution of opinions of products posted
on the web. They concluded that if the aggregate
rating of an item is visible to users and the cost

of expressing opinions for users is low (e.g. one
click of a mouse), users will tend to express either
neutral ratings or reinforce the view set by previous
ratings. On the other hand, if the cost is high (such
as requiring users to write a full review), users
tended to offer opinions when they felt they could
offset the current trend. Changing the visibility
of information and the cost imposed on users to
express their opinions, both determined by the
interface provided to end users, will thus change
the rating trend of the content, and the data that
feeds into the filtering algorithm.

Up to this point, we have considered the pro-
cess of generating recommendations strictly from
the memory-based, nearest-neighbor approach.
However, tackling the problem of information
overload has been approached from a wide range of
research fields and backgrounds. In the following
section we review some of the contributions made
by the field of machine learning, often referred to
as model-based collaborative filtering.

Model-based collaborative filtering

Model-based approaches to collaborative filtering,
stemming from the field of machine learning, aim
to apply the broad set of solutions developed by
that field of research to the problem of informa-
tion filtering. A complete introduction to machine
learning is beyond the scope of this chapter,
although there are many sources available for
background reading, such as Alpaydin (2004).

The applicability of machine-learning tech-
niques is founded in our original description of
the aim of filtering: we would like to predict how
much users will like, or rate, the content they have
not rated already, and rank these items in order to
provide the top-n as recommendations. In other
words, collaborative filtering falls between the
broader categories of classification, or deciding
what rating group unrated items belong to, and
regression, the process of modeling the relation-
ship a variable (such as a user rating) has with
other variables (the set of user profiles).

 �

Computing Recommendations with Collaborative Filtering

An example that highlights the applicability of
these techniques to recommender systems is the
use of a p-rank algorithm (Crammer & Singer,
2001). The items that a user has rated, in this case,
are considered as a set of training instances. Each
instance can be described by a vector of features x;
in our case, the features correspond to the ratings
given to the item by the community of users. The
goal of the algorithm is to learn a ranking rule, or
mapping from an instance to the correct rank (or,
equivalently, a mapping from a user-item to the
correct rating). To do so, the algorithm needs to
learn how to weight the individual features, and
will attempt to do so by iterating over the training
instances. It begins with a vector of weights w (set
to an initial value), and a set of b thresholds, one
for each rank possible. Therefore, for example,
if a 5-star rating scale is implemented, b = 5. At
each step, it will make a prediction based on the
current set of weights, by multiplying the feature
vector x with the weight vector w. The predicted
rank is then computed as the index r of the small-
est threshold such that rbxw <× . When the user
inputs the actual rating, the algorithm can check
to see if it made a mistake, and, if it did, it will
update its weights w and thresholds b. Over time,
this algorithm aims to minimize the loss between
predicted and actual ranks, by learning how to
make accurate predictions using a set of instance
features. This algorithm approaches the problem
of filtering as an instance of a linear classifica-
tion problem, and thus its inception is based on
perceptron classifiers.

The p-rank algorithm is just one of the solutions
proposed by the machine learning community.
Other quoted examples include the use of singular
value decomposition, neural net classifiers, Bayes-
ian networks, support vector machines, induction
rule learning, and latent semantic analysis (Breese
et al, 1998; Yu et al, 2004). Each differs in the
method applied to learn how to generate recom-
mendations, but they all share a similar high-level
solution: they are based on inferring rules and
patterns from the available rating data.

Model-based approaches are attractive solu-
tions since, once trained, they compute predicted
ratings extremely efficiently. However, they have
had limited success, since (the simpler) memory-
based approaches have been shown to be just as
accurate (Grcar et al, 2005). The two categories
of solutions also differ in their interpretation of
the users operating within the system. Memory-
based methods model all user interactions based
on measurable similarity-values, and thus leads
to the notion of a community of recommenders.
Model-based approaches, instead, train a separate
model for each user in the system, and are thus
characterized by a stronger subjective view of the
recommender system’s end users.

Hybrid Methods

As we have seen, filtering algorithms have been
designed from a number of different backgrounds,
leading to the categorization of these algorithms
into memory- and model-based groups. Each
method provides a number of advantages, and
faces a number of weaknesses. Hybrid methods,
combining a series of techniques from both
groups, aim at achieving the best of both worlds:
the advantages of each method stripped of the
weaknesses that it faces when operating alone.

For example, Rashid et al (2006) proposed a
filtering algorithm suitable for extremely large
datasets that combines a clustering algorithm
with the nearest-neighbor prediction method.
The aim was to cluster similar users together
first, in order to overcome the incredibly costly
operation of measuring the similarity between all
of the community user pairs in the system, and
then apply a nearest-neighbor technique to make
predictions in order to reap the high accuracy it
tends to achieve. Much like the work presented
by Li & Kim (2003), clustering methods can be
implemented to replace the “neighborhood forma-
tion” step of memory-based approach described
above. The Yoda system, designed by Shahabi
et al (2001), is an example system that performs

�0

Computing Recommendations with Collaborative Filtering

similar functions: clustering is implemented to
address the scalability issues that arise as the
community of users and available items grows. A
full overview of the performance of memory- and
model-based approaches is available in Breese
et al (1998).

Other means of modeling a community of us-
ers in order to successfully filter information for
each member have been proposed; for example,
Cayzer & Aickelin (2002) drew parallels between
information filtering and the operation of the hu-
man immune system, in order to construct a novel
means of filtering. Another example moves into
the domain of recommending a coherent ordering
of songs by applying case-based reasoning (Bac-
cigalupo & Plaza, 2007). Case-based reasoning
looks at a set of previous experiences in order to
derive information that can be applied to a new
problem. Solving the new problem follows simi-
lar steps to that described for general machine
learning procedures, and entails retrieving the
correct sub-set of experiences, applying them
to the current problem, and then revising the
solution based on any received feedback. This
technique was applied successfully to a domain
where simply predicting good songs was not
enough, but predicting a good sequence of songs
was desired.

Up to now, we have had a high-level overview of
the multiple approaches applied to recommender
systems. However, as we will discuss in the next
section, none of the above methods is perfect;
moreover, they all share common weaknesses
and problems that hinder the generation of useful
recommendations.

recoMMender sYsteMs:
ProbleMs And eVAluAtIons

The issues that recommender systems face can be
grouped into three generic categories: problems
arising from within the algorithm, user issues, and

system vulnerabilities. A good part of research
into collaborative filtering has thus centered on
solving these problems, or minimizing the effect
that they have on the system and the end user ex-
perience. In doing so, the primary metrics used to
evaluate these systems emerge, and further ques-
tions regarding the suitability of these evaluation
methods arise. In this section we will take a look
at how experiments on filtering algorithms are
conducted, what error measures can be extracted,
and the problems that these measures highlight in
the operation of recommender systems.

Algorithm

The first set of issues stem from the filtering al-
gorithms applied to generate recommendations.
As we have seen above, the common goal of the
many algorithms is to predict how much users
will like different items on offer to them.

Missing Data

Predictions are based on the rating information
that has been input by the community of users,
and the breadth and number of ratings available
is generally much smaller than the full possible
set of ratings. In other words, as we have seen,
the user-rating matrix is very sparse. This char-
acteristic of the data prevents user profiles from
being compared to one another, as there will
often not be an overlap between the two profiles,
and therefore the incomparable pair of users will
never be able to contribute to each other’s predic-
tions. In other words, the amount of information
that can be propagated around the community
by means of similarity becomes limited. Solu-
tions to this problem have been proposed; these
include dimensionality reduction techniques,
such as singular value decomposition (Paterek,
2007), and missing data prediction algorithms
(Ma et al, 2007).

 ��

Computing Recommendations with Collaborative Filtering

Accuracy Error Metrics

Regardless of whether a method is applied to
tackle data sparsity, the main task remains that
of predicting items users will like. To evaluate
how well an algorithm is accomplishing this task,
experiments are performed on one of the available
user-rating datasets. The dataset is first partitioned
into two subsets; the first acts as a training set,
and will be used to set any values required by the
algorithm. These may include, in the case of near-
est-neighbor filtering, user-similarity values and
determining each user’s top-k recommenders. In
the case of model-based approaches, the training
set would determine what instances are avail-
able for the algorithm to learn from. The second
subset is the test set, and remains hidden to the
algorithm. An evaluation will feed the training set
into the algorithm, and then ask the algorithm to
make predictions on all the items in the test set.
Predictions can thus be compared to the actual,
hidden values held in the test set, and measures
of accuracy and coverage can be extracted.

Accuracy metrics aim to evaluate how well the
system is making predictions. Available measures
of statistical accuracy include the mean absolute
error (MAE) and the root mean squared error
(RMSE):

N

pr
MAE N

iaia∑ −
=

,,

 (5)

r p

RMSE
N

2
a,i a,i

N (6)

Both of the above measures focus on the dif-
ference between a rating of item i by user a, ra,i,
and the prediction for the same user and item, pa,i.
In general, both metrics measure the same thing
and will thus behave similarly; if an experiment
outputs a reduced MAE, the RMSE will also
reduce. The difference lies in the degree to which
different mistakes are penalized.

The traditional focus on accuracy in recom-
mender research continues to be disputed. On the
one hand, the above accuracy metrics focus on
the predictions that have been output by the algo-
rithm, regardless of whether the prediction was at
all possible or not. Massa & Avesani (2007) have
shown that, in terms of prediction accuracy, these
systems seem to perform well when pre-defined
values are returned. For example, if each predic-
tion simply returned the current user mean (thus
not allowing content to be ranked and converted
into recommendations), accuracy metrics would
still not reflect such poor behavior. McLaughlin
& Herlocker (2004) further this argument, by
arguing that striving for low mean errors biases
recommender systems towards good predictors
rather than recommenders. In other words, a error
in a prediction affects the mean error the same
way, regardless of whether the prediction enabled
the entry to qualify as a top-n recommendation or
not. Furthermore, as shown in the work by Yu et al
(2001), many items will have a low rating variance.
A natural consequence of this is that an evaluation
method that only makes predictions on items in the
test set, items that the user has rated, will tend to
show good performance. Real systems, that have
to provide recommendations based on making
predictions on all unrated items may have much
worse performance. Mean errors will therefore
not tend to reflect the end-user experience. Con-
cerns over accuracy-centric research continues;
McNee et al (2006) even argued that striving for
accuracy is detrimental to recommender system
research, and propose that evaluations should
revert to user-centric methods.

Accuracy metrics persist, however, due to
the need for empirical evaluations of filtering
algorithms which can compare the relative perfor-
mance of different techniques without including
the subjective views of a limited (and, more often
than not, inaccessible) group of test subjects. Some
fixes have been proposed; for example, Lathia
et al (2008) limit the measurement of error to
predictions that were possible. In this case, it is

��

Computing Recommendations with Collaborative Filtering

imperative to report both accuracy and coverage
metrics (as described below) to provide a clear
picture of an algorithm’s performance; however,
this fix does not address the issue of whether a
prediction excludes an item from a top-n list, and
the effect this will have on the end user.

Coverage metrics aim to explore the breadth
of predictions that were possible using the given
method. Looking back on Equations 3 and 4, it
is possible to conceive of a scenario where no
neighbor rating information can be found, and
thus no prediction can be made. In these cases a
default value is returned instead; often this value is
the user’s rating mean, and these predictions will
be labeled uncovered. Coverage metrics compare
the proportion of the dataset that is uncovered to
the size of the test set, in order to measure the
extent that predictions were made possible using
the current algorithm and parameters.

Other error measures have been applied when
analyzing the accuracy of a filtering algorithm,
including receiver-operating characteristic (ROC)
sensitivity (Herlocker et al, 1999). This measure
draws from work done in Information Retrieval,
and aims at measuring how effectively predicted
ratings helped a user select high-quality items.
Recommendations are therefore reduced to a
binary decision: either the user “consumed” the
content (i.e. watched the movie, listened to the
song, read the article) and rated it, or did not. By
comparing the number of false-positives, or items
that should have been recommended that were
not, and false-negatives, or not recommending
an item that should have been, this metric aims at
measuring the extent to which the recommender
system is helping users making good decisions.
However, this method relies on a prediction score
threshold that determines whether the item was
recommended or not, which is often not translate
to the way that users are presented with recom-
mendations.

user-related Problems

Although poor accuracy and coverage will have
a great influence on the user response to the rec-
ommender system, the second set of problems is
tied much closer to the immediate user experience
with the system.

The first of these issues is referred to as the
cold-start problem; this problem can affect users,
items, and new recommender systems equally.
On the one hand, users with no historical ratings,
which include any new-entrants into the system,
will not be able to receive any personalized rec-
ommendations. No historical profile implies that
no neighbors can be computed, recommender
weights will all be zero, and no predictions will
be possible. On the other hand, items that have
not been rated by any member of the community
can not be recommended to any users. This high-
lights the dependence of filtering algorithms on
the altruism of the community of users making
use of the recommender system; if users do not
rate items, or contribute to their profile then the
cycling process of generating recommendations
can not be completed.

A number of solutions have been proposed to
confront the cold-start problem. In the case of
recommender systems based on explicit ratings,
the system could require users to rate a number
of items as part of the sign-up procedure (Rashid
et al, 2002). This method imposes an additional
burden on users, but guarantees that there will be
a limited amount of profile information to gener-
ate the first recommendations. Other researchers
proposed to counter the cold-start problem by
making inferences from non-profile information
which may be included in the sign-up process,
such as simple demographic values like age,
gender, and location (Nguyen et al, 2007). In this
case, a rule-based induction process is applied in
order to identify, for each user, a sub-set of the
community that will most likely include good
recommenders. However, not all recommender

 ��

Computing Recommendations with Collaborative Filtering

systems require users to input demographic data;
this solution is dependent on the details of the
sign-up procedure. Other solutions to the user
cold-start problem diverge away from similar-
ity, and lean towards the broader notion of trust
(Massa & Avesani, 2007). Trust is defined as a
user-input measure of how relevant and interesting
other recommender’s ratings (or reviews) seem to
be; it thus has a strong overlap with similarity, but
is received from the end-users rather than being
computed, and can successfully be propagated
over an entire community. However, as described
above, the cold-start problem does not only affect
users: it can also plague a new system, or prevent
new items from being recommended. In this case,
Park et al (2006) proposed the use of filter-bots, or
automated surrogate users who rate items purely
based on their content or attributes. Although
these bots do not equal the ability a community
of users has to find high quality content, they
ensure that new items will not be excluded from
the recommendation process.

The second set of issues regards the effect that
recommendations, when they can be generated,
have on the user. On the one hand, there is an
issue of transparency; in other words, do users
understand how their recommendations were
generated? This issue will be of primary concern
to those developing the user interface with the
system, who will aim to present recommenda-
tions in a clear, understandable way (Tintarev &
Masthoff, 2007). On the other hand, users look
to recommender systems for new, interesting,
and surprising (or serendipitous) information.
If a user rates an item (for example, rating an
album by The Beatles), loading the user’s recom-
mendations with extremely similar items (i.e.
all of the other albums by The Beatles) is often
not helpful at all; the user has not been pointed
towards new information, and is only inundated
with recommendations towards content that is
probably known already. The question therefore
becomes: to what extent do filtering algorithms

generate serendipitous recommendations? This
is a very difficult characteristic to measure, and
remains an open research question.

The last user-issue that we consider here is also
tied with the algorithm chosen to generate recom-
mendations. Whether the algorithms are learning
over training instances or computing relation-
ships between the user pairs of the community,
these algorithms suffer from very high latency.
Computing user similarity or feeding data into a
learning algorithm is a very expensive operation,
often requiring exponential space or time, and
can not be continuously updated. Recommender
systems therefore tend to perform iterative, regular
updates. Users will not be continuously offered
new recommendations, and will have to wait for
a system update to see their recommendations
change. Constant time algorithms have been
proposed (Goldberg et al, 2000), but have yet to
be widely applied.

system Vulnerabilities

The last set of problems faced by recommender
systems are system vulnerabilities; these are
the set of problems that are caused by malicious
users attempting to game or modify the system.
Why would users want to exploit a recommender
system? Attempting to modify or control the
recommendations that are output by a system
aims at harvesting the success of recommender
systems for the attacker’s selfish purposes. This
may be done in order to artificially promote a piece
of content, to demote content (perhaps since it
competes with the attacker’s content), or to target
a specific target audience of users. These attacks
are aided by the near-anonymity of users in the
recommender system community. In some cases,
signing up to an e-service that uses recommender
system technology only requires an email address.
Creating a number of fake accounts is thus not
beyond the realms of possibility; furthermore, if
each of these fake accounts has an equal contribu-

��

Computing Recommendations with Collaborative Filtering

tion to predicted ratings that honest user profiles
do, it becomes possible to direct the output of
recommender systems at will.

Malicious users can therefore build a number
of fake profiles in order to influence the under-
lying collaborative filtering algorithm. These
attacks have often been referred to as shilling,
profile-injection, or Sybil attacks (Mobasher et
al, 2007). All of these share the common method
of inserting multiple entities into the system in
order to change the resulting predicted ratings
for the target item, user, or set of users. In other
words, they take advantage of the way that users
are modeled by the algorithm in order to achieve
a desired outcome. The fake profiles that are
being inserted can be engineered to be highly
correlated to the target user (or item), with the
small exception of the rating for the item under
attack. This way, nearest-neighbor methods, as
described in previous sections, will select the
fake profile when generating a predicted rating,
and thus will return a prediction that will deviate
a lot from the experience the user will have. For
example, a movie may be predicted to have a five
star rating, while the user would in fact input only
two stars; the injected profiles have managed to
change the outcome of the recommendations and
favor the disliked movie.

Profile-injection attacks are often classified
according to the amount of information attack-
ers require in order to successfully construct
fake profiles. Lam & Riedl (2004) explored the
effectiveness of introducing profiles based on
random-valued ratings against profiles based on
ratings centered on the global mean of the dataset.
Attacks are more effective if they are based on
full knowledge of the underlying dataset distri-
bution; however, many filtering datasets share
similar distributions, and thus most malicious
users will be able to perform more than a simple,
naïve attack.

Research in the field of recommender system
vulnerabilities can be broken into two categories.
On the one hand, system administrators require

a means of identifying attacks, by being able to
recognize when an attack is occurring and which
users are malicious profiles. To do so, Chirita et
al (2005) propose to identify attackers by mea-
suring characteristics of the injected profiles. A
malicious profile can be identified if it shares
high similarity with a large subset of users, has
a strong effect on the predictive accuracy of the
system, and includes ratings that have a strong
deviation from the mean agreement amongst the
community members. Although this technique can
be used to successfully eliminate injected profiles,
the difficulty of the problem is also highlighted:
what if an honest user’s profile is identified as a
malicious one?

On the other hand, the vulnerabilities them-
selves are addressed; how can these attacks be
prevented? How can the cost or effect be mini-
mized? General solutions often involve minimiz-
ing the number of recommenders that users can
interact with, mimicking the social behavior
of not trusting unknown people. Model-based
approaches have also been shown to be more
resilient to manipulation. Resnick & Sami (2007)
propose a manipulation-resistant recommender
system that protects its user community by ap-
plying a reputation score to recommenders. A
more comprehensive review of the vulnerabilities
of collaborative recommender systems and their
robustness to attack can be found in Mobasher
et al (2007).

future trends

Recommender system research is by no means
waning. In fact, it has recently been encouraged
by the announcement of the Netflix competition,
which has contributed to research by releasing
one of the largest user-rating datasets available
to date1. The competition aims at reducing the
error in the Netflix movie recommender. It has
therefore given way to a surge in research aiming
at mere accuracy, and, as we discussed above,

 ��

Computing Recommendations with Collaborative Filtering

there is much more to recommender systems than
solving the prediction problem.

Research to date has widely ignored the tem-
poral characteristic of recommender systems.
The only exception lies in the definition of the
cold-start problem, which recognizes that new
entrants into the system will not receive suitable
recommendations until their profile has grown.
Exploring the temporal characteristic of these
systems would shed light on how they grow,
evolve over time and the influence that varying
amounts of available rating information has on the
accuracy of a system. In other words, a temporal
view of the system would shed light on the effect
of filtering algorithms applied to a community of
users. One method of approaching this problem
is to consider a recommender system as a graph.
Nodes in this graph correspond to users, and a
link between a pair of users is weighted with
the similarity shared between the two (Lathia et
al, 2008). This paves the way for the techniques
described by graph-theory research to be applied
to recommender systems.

As we have seen, both the user and community
model is essential to collaborative filtering algo-
rithms. These models are based on measurable
similarity in order to allow opinion information
to be propagated around the community. Un-
derstanding how similarity evolves over time,
therefore, would also highlight how interactions
between recommenders can be designed, and what
properties of the system emerge when different
filtering algorithms are applied.

Majority of the focus of recommender system
research has been context-specific. The datasets
available reinforce this focus; the publicly avail-
able datasets do not cross between different types
of content. However, performing cross-context
recommendations remains an open question.
Given a user profile of movie preferences, can
the user be recommended music successfully?
If a user’s music has been profiled, can the user
be recommended live music events or concerts
of interest? This issue is of particular interest

to e-commerce portals, which tend to provide
a wide range of items and are not limited to a
specific type. Many services also only profile a
user in a given context, and thus users tend to
build multiple profiles over a wide range of loca-
tions. Finding means of porting profiles from one
place to another, and successfully using them for
cross-contextual recommendations has yet to be
explored.

Recommender systems also hold the poten-
tial to be applied in non-centralized domains:
including peer to peer file sharing networks and
mobile telephones. There has been a wide range
of work done addressing peer to peer network
recommendations (Ziegler, 2005), but little work
addressing how collaborative filtering would oper-
ate in a mobile environment. Mobile collaborative
filtering would allow users to benefit as they have
when using online services. It would allow them
to, for example, share content when on the move,
and receiving recommendations relating to their
immediate surroundings. Porting collaborative
filtering to distributed environments brings to
light a new set of obstacles. How will recom-
mendations be computed? Where will profiles be
stored, and who will they be shared with? Data
privacy and security gain renewed importance
(Lathia et al, 2007).

conclusIon

In this chapter, we have introduced the underly-
ing algorithms of recommender systems, based
on collaborative filtering. Recommender systems
were conceived in response to information over-
load, a natural consequence of the ever-expanding
breadth of online content; it has become impos-
sible to sift through or browse online content
without recommendations. Collaborative filtering
automates the process of generating recommen-
dations by building on the common assumption
of like-mindedness. In other words, people who
have displayed a degree of similarity in the past

��

Computing Recommendations with Collaborative Filtering

will continue sharing the same tastes in the fu-
ture. The model of users held by these systems
therefore focuses on the set of preferences that
each individual has expressed, and interactions
between users can be determined according to
values derived by operating on the information
available in user’s profiles.

The approaches themselves, however, originate
from a wide variety of backgrounds, and thus
have been separated into content-based meth-
ods, which infer recommendations from item
attributes, model-based solutions, which draw on
the success of machine learning techniques, and
the dominant memory-based, nearest neighbor
technique. Nearest neighbor algorithms follow a
three-stage process: finding a set of recommend-
ers for each user, based on a pre-defined measure
of similarity, computing predicted ratings based
on the input of these recommenders, and serving
recommendations to the user, hoping that they
will be accurate and useful suggestions. The
choice of what method to implement relies on a
fine balance between accuracy, performance, and
is also dependent on specific context that recom-
mendations need to be made for. Each method
has its own strengths and weaknesses, and hybrid
methods attempt to reap the best of both worlds
by combining a variety of methods.

The most general problems faced by recom-
mender systems remain the same, regardless of
the approach used to build the filtering algorithm.
These problems were grouped into three catego-
ries: problems originating from the algorithm,
including accuracy, coverage, and whether they
actually help the user’s decision making process,
problems centered on the users, including the cold-
start problem and displaying serendipitous, trans-
parent recommendations, and lastly, system-wide
vulnerabilities and their susceptibility to attack.
However, the exciting on-going research promises
to not only solve, but clarify the effects of these
algorithms on end-users and boost their potential
to help users in a wide range of contexts.

references

Agresti, A., & Winner, L. (1997). Evaluating
Agreement and Disagreement Among Movie
Reviewers. Chance, 10, 10-14.

Alpaydin, E. (2004). Introduction to Machine
Learning. Massachusetts, USA. MIT Press.

Basu, C., Hirsh, H., & Cohen, W. (2001). Technical
Paper Recommendation: A Study in Combining
Multiple Information Sources. Journal of Artificial
Intelligence Research, 14, 213-252.

Baccigalupo, C., & Plaza, E. (2007). A Case-Based
Song Scheduler For Group Customized Radio. In
Proceedings of the International Conference on
Case Based Reasoning (ICCBR). Belfast, Ireland:
Springer.

Breese, J. S., Heckerman, D., & Kadie, C. (1998).
Empirical Analysis of Predictive Algorithms for
Collaborative Filtering (Tech Rep. No. MSR-TR-
98-12). Redmond, WA: Microsoft Research.

Borchers A., Herlocker J., Konstan J., & Riedl
J. (1998). Ganging up on Information Overload.
IEEE Computer, 31, 106-108.

Cayzer, S., & Aickelin, U. (2002). A Recom-
mender System based on the Immune Network.
In Proceedings of the Fourth Congress on Evo-
lutionary Computation (CEC-2002), Honolulu,
USA: IEEE.

Celma O., & Lamere, P. (2007, September). Music
Recommendation Tutorial. Presented at the 8th
International Conference on Music Information
Retrieval, Vienna, Austria.

Charikar, M. (2002). Similarity Estimation
Techniques From Rounding Algorithms. In An-
nual ACM Symposium on Theory of Computing,
Montreal, Canada: ACM Press.

Chirita, P-A., Nejdl, W., & Zamfir, C. Prevent-
ing Shilling Attacks in Online Recommender
Systems. In Proceedings of the 7th Annual ACM

 ��

Computing Recommendations with Collaborative Filtering

International Workshop on Web Information and
Data Management. Bremen, Germany: ACM
Press.

Faloutsos, C., & Oard, D. (1995). A Survey of
Information Retrieval and Filtering Methods
(Tech. Rep. No. CS-TR-3514). Maryland, USA:
University of Maryland, Department of Computer
Science.

Goldberg, D., Nichols, D., Oki, B. M., & Terry,
D. (1992). Using Collaborative Filtering to Weave
an Information Tapestry. Communications of the
ACM, 35, 61-70. ACM Press.

Goldberg, K., Roeder T., Gupta, D., & Perkins, C.
(2000). Eigentaste: A Constant Time Collaborative
Filtering Algorithm (Tech Rep. No. UCB/ERL
M00/41). Berkeley, California: University of
California, EECS Department.

Grcar, M., Fortuna, B., & Mladenic, D. (2005,
August). KNN versus SVM in the Collaborative
Filtering Framework. In Workshop on Knowledge
Discovery on the Web.

Herlocker, J. L., Konstan, J. A., Borchers, A., &
Riedl, J. (1999). An Algorithmic Framework for
Performing Collaborative Filtering. In Proceed-
ings of the 22nd Annual International ACM SIGIR
Conference on Research and Development in In-
formation Retrieval, Berkley, CA: ACM Press.

Herlocker J., Konstan J., Terveen, L., & Riedl,
J. (2004). Evaluating Collaborative Filtering
Recommender Systems. ACM Transactions on
Information Systems, 22, 5-53.

Konstan, J., Miller, B., Maltz, D., Herlocker, J.,
Gordon, L., & Riedl, J. (1997) GroupLens: Ap-
plying Collaborative Filtering to Usenet News.
Communications of the ACM, 40, 77-87. ACM
Press.

Lam, S. K., & Riedl, J. (2004). Shilling recom-
mender systems for fun and profit. In Proceedings
of the 13th international conference on World Wide
Web, New York, NY, USA: ACM Press.

Lathia, N., Hailes, S., & Capra, L (2007). Private
Distributed Collaborative Filtering Using Estimat-
ed Concordance Measures. In Proceedings of the
2007ACM Conference on Recommender Systems
(RecSys). Minneapolis, USA: ACM Press.

Lathia, N., Hailes, S., & Capra, L. (2008). The
Effect of Correlation Coefficients on Commu-
nities of Recommenders. In 23rd Annual ACM
Symposium on Applied Computing, Trust, Recom-
mendations, Evidence and other Collaboration
Know-how (TRECK) Track. Fortaleza, Ceara,
Brazil: ACM Press.

Li, Q., & Kim, B. M. (2003). Clustering Ap-
proach for Hybrid Recommender System. In
Proceedings of the 2003 IEEE/WIC International
Conference on Web Intelligence. Beijing, China:
IEEE Press.

Linden, G., Smith, B., & York, J. (2003). Ama-
zon.com Recommendations: Item-to-Item Col-
laborative Filtering. IEE Internet Computing, 7,
76-80.

Ma, H., King, I., Lyu, M. R. (2007). Effective Miss-
ing Data Prediction for Collaborative Filtering. In
Proceedings of the 30th Annual International ACM
SIGIR Conference on Research and Development
in Information Retrieval. Amsterdam, Holland:
ACM Press.

Massa, P., & Avesani, P. (2007). Trust-aware
Recommender Systems. In Proceedings of the
2007ACM Conference on Recommender Systems
(RecSys). Minneapolis, USA: ACM Press.

McLaughlin, M. R., & Herlocker, J. L. (2004). A
Collaborative Filtering Algorithm and Evaluation
Metric that Accurately Model the User Experi-
ence. In Proceedings of the 27th Annual Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval. Sheffield,
United Kingdom: ACM Press.

McNee, S. M., Riedl, J., & Konstan, J. A. (2006,
April). Being Accurate is Not Enough: How Accu-

��

Computing Recommendations with Collaborative Filtering

racy Metrics have hurt Recommender Systems. In
Extended Abstracts of the 2006 ACM Conference
on Human Factors in Computing Systems (CHI
2006). Montreal, Canada: ACM Press.

Mobasher, B., Burke, R., Bhaumik, R., & Wil-
liams, C. (2007). Towards Trustworthy Recom-
mender Systems: An Analysis of Attack Models
and Algorithm Robustness. Transations on
Internet Technology (TOIT). 7, 4.

Nguyen, A., Denos, N., & Berrut, C. (2007).
Improving new user recommendations

with rule-based induction on cold user data. In
Proceedings of the 2007ACM Conference on
Recommender Systems (RecSys). Minneapolis,
USA: ACM Press.

Park, S., Pennock, D., Madani, O., Good, N., &
DeCoste, D. (2006). Naïve filterbots for Robust
Cold-start Recommendations. In Proceedings of
the ACM Conference on Knowledge Discovery and
Data Mining. Philadelphia, USA: ACM Press.

Paterek, A. (2007). Improving Regularized Sin-
gular Value Decomposition For Collaborative
Filtering. In Proceedings of the ACM Confer-
ence on Knowledge Discovery and Data Mining.
Philadelphia, USA: ACM Press.

Pazzani, M. J., & Billsus, D. (2007) Content-
Based Recommendation Systems. The Adaptive
Web, 4321, 325-341.

Rashid, A. M., Albert, I., Cosley, D., Lam, S. K.,
McNee, S. M., Konstan, J. A., & Riedl, J. (2002).
Getting to Know You: Learning New User Prefer-
ences in Recommender Systems. In International
Conference on Intelligent User Interfaces (IUI
2002). Miami, Florida: ACM Press.

Rashid, A. M., Lam, S. K., Karypis G., & Riedl,
J. (2006, August). ClustKNN: A Highly Scalable
Hybrid Model- & Memory-Based CF Algorithm.
In The 12th ACM Conference on Knowledge Dis-
covery and Data Mining Philadelphia, Pennsyl-
vania, USA: ACM Press.

Resnick, P., & Sami, R. The Influence Limiter:
Provably Manipulation Resistant Recommender
Systems. In Proceedings of the 2007ACM Con-
ference on Recommender Systems (RecSys).
Minneapolis, USA: ACM Press.

Ruthven, I., & Lalmas, M. (2003). A Survey on
the Use of Relevance Feedback for Information
Access Systems. The Knowledge Engineering
Review, 18, 95-145.

Sarwar, B., Karypis, G., Konstan, J., & Riedl,
J. (2001). Item-based collaborative filtering rec-
ommendation algorithms. In Proceedings of the
10th International World Wide Web Conference
(WWW10), Hong Kong, China: ACM Press.

Sarwar, B., Konstan, J., Borchers, A., Herlocker,
J., Miller, B., & Riedl, J. (1998). Using Filtering
Agents to Improve Prediction Quality in the
GroupLens Research Collaborative Filtering
System. Proceedings of the 1998 Conference on
Computer Supported Cooperative Work. New
Orleans, USA: ACM Press.

Schafer, J., Konstan, J., & Riedl, J. (2001) E-
Commerce Recommendation Applications. In
Data Mining and Knowledge Discovery, 5(1),
115-153.

Shahabi, C., Banaei-Kashani, F., Chen Y.-S.,
& McLeod, D. (2001). Yoda: An Accurate and
ScalableWeb-based Recommendation System.
In Proceedings of Sixth International

Conference on Cooperative Information Systems.
Trento, Italy: Springer.

Tintarev, N., & Masthoff, J. (2007). Effective
Explanantions of Recommendations: User-Cen-
tered Design. In Proceedings of the 2007 ACM
Conference on Recommender Systems (RecSys).
Minneapolis, USA: ACM Press.

Viappiani, P., Pu, P., & Faltings, B. (2007). Con-
versational Recommenders with Adaptive Sug-
gestions. In Proceedings of Recommender Systems
(RecSys). Minneapolis, USA: ACM Press

 ��

Computing Recommendations with Collaborative Filtering

Yu, K., Schwaighofer, A., Tresp, V., Xu, X., &
Kriegel, H. (2004). Probabilistic memory-based
collaborative filtering. IEEE Transactions on
Knowledge and Data Engineering, 16, 56–69.

Yu, K., Wen, Z., Xu, X., & Ester, M. (2001).
Feature Weighting and Instance Selection for
Collaborative Filtering. In Proceedings of the
12th International Workshop on Database and
Expert Systems Applications. Munich, Germany:
IEEE Press.

Wu, F., & Huberman, B. A. (2007). Public
Discourse in the Web Does Not Exhibit Group
Polarization (Technical Report). Palo Alto, CA:
HP Labs Research.

Ziegler, C. (2005). Towards Decentralised Rec-
ommender Systems. (PhD Thesis), Freiburg,
Germany: Freiburg University, Department of
Computer Science.

endnote

1 http://www.netflixprize.com

